Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease

Abstract

Elucidating the cellular immune response to infectious agents is a prerequisite for understanding disease pathogenesis and designing effective vaccines. In the identification of microbial T-cell epitopes, the availability of purified or recombinant bacterial proteins has been a chief limiting factor. In chronic infectious diseases such as Lyme disease, immune-mediated damage may add to the effects of direct infection by means of molecular mimicry to tissue autoantigens. Here, we describe a new method to effectively identify both microbial epitopes and candidate autoantigens. The approach combines data acquisition by positional scanning peptide combinatorial libraries and biometric data analysis by generation of scoring matrices. In a patient with chronic neuroborreliosis, we show that this strategy leads to the identification of potentially relevant T-cell targets derived from both Borrelia burgdorferi and the host. We also found that the antigen specificity of a single T-cell clone can be degenerate and yet the clone can preferentially recognize different peptides derived from the same organism, thus demonstrating that flexibility in T-cell recognition does not preclude specificity. This approach has potential applications in the identification of ligands in infectious diseases, tumors and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-cell clonotypes of unmanipulated CSF, examined by RT–PCR–single-strand conformation polymorphism.
Figure 2: Proliferative response of T-cell clone CSF-3 to the 200 mixtures of a decapeptide PS-SCL in which each position has one defined amino acid (20 for each of the 10 positions (P1 to P10); horizontal axes, single-letter amino acid code).
Figure 3: Score distributions for sequences for all putative peptides 10 amino acids in length.
Figure 4: Activation of T-cell clone CSF-3 by the identified peptides.

References

  1. Germain, R.N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287 –299 (1994).

    Article  CAS  Google Scholar 

  2. Walden, P. T-cell epitope determination. Curr. Opin. Immunol. 8, 68–74 (1996).

    Article  CAS  Google Scholar 

  3. Haass, A. Lyme neuroborreliosis. Curr. Opin. Neurol. 11, 253–258 (1998).

    Article  CAS  Google Scholar 

  4. Sigal, L.H. Lyme disease: a review of aspects of its immunology and immunopathogenesis. Annu. Rev. Immunol. 15, 63– 692 (1997).

    Article  CAS  Google Scholar 

  5. Sigal, L.H. Immunologic mechanisms in Lyme neuroborreliosis: the potential role of autoimmunity and molecular mimicry. Semin. Neurol. 17, 63–68 (1997).

    Article  CAS  Google Scholar 

  6. Gross, D.M. et al. Identification of LFA-1 as a candidate autoantigen in treatment- resistant Lyme arthritis. Science 281, 703 –706 (1998).

    Article  CAS  Google Scholar 

  7. Pinilla, C., Appel, J.R., Blanc, P. & Houghton, R.A. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques 13, 901–905 (1992).

    CAS  Google Scholar 

  8. Hemmer, B. et al. The use of soluble synthetic peptide combinatorial libraries to determine antigen recognition of T-cells. J. Pept. Res. 52, 338–345 (1998).

    Article  CAS  Google Scholar 

  9. Moretta, A., Pantaleo, G., Moretta, L., Cerottini, J.C. & Mingari, M.C. Direct demonstration of the clonogenic potential of every human peripheral blood T-cell. Clonal analysis of HLA-DR expression and cytolytic activity. J. Exp. Med. 157 , 743–754 (1983).

    Article  CAS  Google Scholar 

  10. Yssel, H. et al. Borrelia burgdorferi activates a T helper type 1-like T-cell subset in Lyme arthritis. J. Exp. Med. 174, 593–601 (1991).

    Article  CAS  Google Scholar 

  11. Yamamoto, K. et al. Establishment and application of a novel T-cell clonality analysis using single-strand conformation polymorphism of T-cell receptor messenger signals. Hum. Immunol. 48, 23– 31 (1996).

    Article  CAS  Google Scholar 

  12. Illes, Z. et al. Identification of autoimmune T-cells among in vivo expanded CD25+ T-cells in multiple sclerosis. J. Immunol. 162, 1811–1187 (1999).

    CAS  Google Scholar 

  13. Hemmer, B., Vergelli, M., Pinilla, C., Houghten, R. & Martin, R. Probing degeneracy in T-cell recognition using combinatorial peptide libraries. Immunol. Today 19, 163–168 (1998).

    Article  CAS  Google Scholar 

  14. Fraser, C.M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  Google Scholar 

  15. Hemmer, B. et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T-cell clone. J. Exp. Med. 185, 1651–1659 (1997).

    Article  CAS  Google Scholar 

  16. Hemmer, B. et al. Predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J. Immunol. 160, 3631– 3636 (1998).

    CAS  Google Scholar 

  17. Hemmer, B., Stefanova, I., Vergelli, M., Germain, R.N. & Martin, R. Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T-cells. J. Immunol. 160, 5807–5814 (1998).

    CAS  Google Scholar 

  18. Oksi, J. et al. Inflammatory brain changes in Lyme borreliosis. A report on three patients and review of literature. Brain 119, 2143–2154 (1996).

    Article  Google Scholar 

  19. Garcia-Monco, J.C. & Benach, J.L. Mechanisms of injury in Lyme neuroborreliosis. Semin. Neurol. 17, 57–62 (1997).

    Article  CAS  Google Scholar 

  20. Steere, A.C., Dwyer, E. & Winchester, R. Association of chronic Lyme arthritis with HLA-DR4 and HLA-DR2 alleles. N. Engl. J. Med. 323, 219 –223 (1990).

    Article  CAS  Google Scholar 

  21. Lengl-Janssen, B., Strauss, A.F., Steere, A.C. & Kamradt, T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A in patients with treatment-resistant or treatment-responsive Lyme arthritis. J. Exp. Med. 180, 2069–2078 (1994).

    Article  CAS  Google Scholar 

  22. Kamradt, T., Lengl-Janssen, B., Strauss, A.F., Bansal, G. & Steere, A.C. Dominant recognition of a Borrelia burgdorferi outer surface protein A peptide by T helper cells in patients with treatment-resistant Lyme arthritis. Infect. Immun. 64, 1284–1289 (1996).

    CAS  Google Scholar 

  23. Martin, R., Ortlauf, J., Sticht-Groh, V., Bogdahn, U., Goldmann, S.F., & Mertens H.G. Borrelia burgdorferi-specific and autoreactive T-cell lines from cerebrospinal fluid in Lyme radiculomyelitis. Ann. Neurol . 24, 509–516 (1988).

    Article  CAS  Google Scholar 

  24. Akin, E., McHugh, G.L., Flavell, R.A., Fikrig, E. & Steere, A.C. The immunoglobulin (IgG) antibody response to OspA and OspB correlates with severe and prolonged Lyme arthritis and the IgG response to P35 correlates with mild and brief arthritis. Infect. Immun. 67, 173–181 (1999).

    CAS  Google Scholar 

  25. Fikrig, E. et al. Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity 6, 531–539 (1997).

    Article  CAS  Google Scholar 

  26. Oschmann, P., Wellensiek, H.J., Zhong, W., Dorndorf, W. & Pflughaupt, K.W. Relationship between the Borrelia burgdorferi specific immune response and different stages and syndromes in neuroborreliosis. Infection 25, 292– 297 (1997).

    Article  CAS  Google Scholar 

  27. Padula, S.J., Sampieri, A., Dias, F., Szczepanski, A. & Ryan, R.W. Molecular characterization and expression of p23 (OspC) from a North American strain of Borrelia burgdorferi. Infect. Immun. 61, 5097–5105 (1993).

    CAS  Google Scholar 

  28. Lam, T.T., Nguyen, T.P., Fikrig, E. & Flavell, R.A. A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease. J. Clin. Microbiol. 32, 876–883 (1994).

    CAS  Google Scholar 

  29. Kovats, S. et al. Coordinate defects in human histocompatibility leukocyte antigen class II expression and antigen presentation in bare lymphocyte syndrome. J. Exp. Med. 179, 2017– 2022 (1994).

    Article  CAS  Google Scholar 

  30. Vergelli, M. et al. HLA-DR-restricted presentation of purified myelin basic protein is independent of intracellular processing. Eur. J. Immunol. 27, 941–951 (1997).

    Article  CAS  Google Scholar 

  31. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395– 404 (1998).

    Article  CAS  Google Scholar 

  32. Gran, B., Hemmer, B., Vergelli, M., McFarland, H.F. & Martin, R. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann. Neurol. 45, 559–567 (1999).

    Article  CAS  Google Scholar 

  33. Gross, D.M., Steere, A.C. & Huber, B.T. T helper 1 response is dominant and localized to the synovial fluid in patients with Lyme arthritis. J. Immunol. 160, 1022–1028 (1998).

    CAS  Google Scholar 

  34. Allen, M. et al. Association of susceptibility to multiple sclerosis in Sweden with HLA class II DRB1 and DQB1 alleles. Hum Immunol 39, 41–48 (1994).

    Article  CAS  Google Scholar 

  35. Centers for Disease Control and Prevention. Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. J. Am. Med. Assoc. 274, 937 (1995).

  36. Pinilla, C., Appel, J.R. & Houghten, R.A. Investigation of antigen-antibody interactions using a soluble, non- support-bound synthetic decapeptide library composed of four trillion (4 × 10(12) sequences. Biochem. J. 301 , 847–853 (1994).

    Article  CAS  Google Scholar 

  37. Houghten, R.A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131 –5135 (1985).

    Article  CAS  Google Scholar 

  38. Martin, R. et al. Diversity in fine specificity and T-cell receptor usage of the human CD4+ cytotoxic T-cell response specific for the immunodominant myelin basic protein peptide 87-106. J. Immunol. 148, 1359–1366 (1992).

    CAS  Google Scholar 

  39. Reece, J.C., Geysen, H.M. & Rodda, S.J. Mapping the major human T helper epitopes of tetanus toxin. The emerging picture. J. Immunol. 151, 6175–6184 (1993).

    CAS  Google Scholar 

  40. Trueba, G.A., Old, I.G., Saint Girons, I. & Johnson, R.C. A cheA cheW operon in Borrelia burgdorferi, the agent of Lyme disease. Res. Microbiol. 148, 191–200 (1997).

    Article  CAS  Google Scholar 

  41. Alekshun, M., Kashlev, M. & Schwartz, I. Molecular cloning and characterization of Borrelia burgdorferi rpoB. Gene 186, 227–235 (1997).

    Article  CAS  Google Scholar 

  42. Bono, J.L., Tilly, K., Stevenson, B., Hogan, D. & Rosa, P. Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology 144, 1033–1044 (1998).

    Article  CAS  Google Scholar 

  43. Old, I.G., Margarita, D. & Saint Girons, I. Unique genetic arrangement in the dnaA region of the Borrelia burgdorferi linear chromosome: nucleotide sequence of the dnaA gene. FEMS Microbiol. Lett. 111, 109– 114 (1993).

    Article  CAS  Google Scholar 

  44. Sprenger, H. et al. Borrelia burgdorferi induces chemokines in human monocytes. Infect. Immun. 65, 4384– 4388 (1997).

    CAS  Google Scholar 

  45. Yamamoto, Y. et al. Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. J. Biol. Chem. 269, 31725– 31730 (1994).

    CAS  Google Scholar 

  46. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270 , 293–296 (1995).

    Article  CAS  Google Scholar 

  47. Yamada, Y. et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl. Acad. Sci. USA 89, 251–255 (1992).

    Article  CAS  Google Scholar 

  48. Derynck, R. et al. A new type of transforming growth factor-beta, TGF-beta 3. EMBO J. 7, 3737–3743 (1988).

    Article  CAS  Google Scholar 

  49. Schweickart, V.L. et al. Cloning of human and mouse EBI1, a lymphoid-specific G-protein-coupled receptor encoded on human chromosome 17q12-q21.2. Genomics 23, 643–650 (1994).

    Article  CAS  Google Scholar 

  50. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  Google Scholar 

  51. Sims, J.E. et al. Cloning the interleukin 1 receptor from human T-cells. Proc. Natl. Acad. Sci. USA 86, 8946– 8950 (1989).

    Article  CAS  Google Scholar 

  52. Nanus, D.M. et al. Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proc. Natl. Acad. Sci. USA 90, 7069–7073 (1993).

    Article  CAS  Google Scholar 

  53. Li, L., Wang, J. & Cooper, M.D. cDNA cloning and expression of human glutamyl aminopeptidase (aminopeptidase A). Genomics 17, 657– 664 (1993).

    Article  CAS  Google Scholar 

  54. Thomson, B.J., Efstathiou, S. & Honess, R.W. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature 351, 78–80 (1991).

    Article  CAS  Google Scholar 

  55. Pieniazek, N.J., Slemenda, S.B., Pieniazek, D., Velarde, J., Jr. & Luftig, R.B. Human enteric adenovirus type 41 (Tak) contains a second fiber protein gene. Nucleic Acids Res. 18, 1901 (1990).

    Article  CAS  Google Scholar 

  56. Gao, F. et al. Molecular cloning and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A through G. The WHO and NIAID networks for HIV isolation and characterization. J. Virol. 70, 1651–1667 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Subramanian (National Institute of Allergy and Infectious Diseases, National Institutes of Health) for help in identifying the peptide sequences. B.H. was supported in part by the Deutsche Forschungsgemeinschaft (He 2386/2-1). B.G. is supported by a Fogarty International Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clemencia Pinilla or Roland Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmer, B., Gran, B., Zhao, Y. et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 5, 1375–1382 (1999). https://doi.org/10.1038/70946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing