Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition

Abstract

Alzheimer amyloid β-peptide (Aβ) is a physiological peptide constantly anabolized and catabolized under normal conditions. We investigated the mechanism of catabolism by tracing multiple-radiolabeled synthetic peptide injected into rat hippocampus. The Aβ1–42 peptide underwent full degradation through limited proteolysis conducted by neutral endopeptidase (NEP) similar or identical to neprilysin as biochemically analyzed. Consistently, NEP inhibitor infusion resulted in both biochemical and pathological deposition of endogenous Aβ42 in brain. This NEP-catalyzed proteolysis therefore limits the rate of Aβ42 catabolism, up-regulation of which could reduce the risk of developing Alzheimer's disease by preventing Aβ accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Profiles of in vivo 3H/14C-Aβ1–42 proteolysis.
Figure 3: Two-dimensional HPLC separation of the catabolic intermediate and its aggregation property
Figure 4: Effect of protease inhibitors on 3H/14C-Aβ1–42 degradation.
Figure 5: Proteolysis of 3H/14C-Aβ1–42 by isolated brain NEP.
Figure 6: Immunohistochemistry of rat brain treated with thiorphan.

Similar content being viewed by others

References

  1. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 ( 1997).

    Article  CAS  Google Scholar 

  2. Selkoe, D.J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447– 453 (1998).

    Article  CAS  Google Scholar 

  3. Price, D.L., Tanzi, R.E., Borchelt, D.R. & Sisodia, S.S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    Article  CAS  Google Scholar 

  4. Selkoe, D.J. Physiological production of the β-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 16, 403–409 (1993).

    Article  CAS  Google Scholar 

  5. Sisodia, S.S. & Price, D.L. Role of the β-amyloid protein in Alzheimer's disease. FASEB J. 9, 366– 370 (1995).

    Article  CAS  Google Scholar 

  6. Funato, H. et al. Quantitation of amyloid β-protein (Aβ) in the cortex during aging and in Alzheimer's disease. Am. J. Pathol. 152, 1633–1640 (1998).

    CAS  Google Scholar 

  7. Zini, S. et al. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc. Natl. Acad. Sci. USA 93, 11968–11973 ( 1996).

    Article  CAS  Google Scholar 

  8. O'Cuinn, G., O'Connor, B., Gilmartin, L. & Smyth, M. in Metabolism of Brain Peptides (ed. O'Cuinn, G.) 99– 157 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  9. Näslund,J. et al. High-resolution separation of amyloid β-peptides: structural variants present in Alzheimer's disease amyloid. J. Neurochem. 67, 294–301 ( 1996).

    Article  Google Scholar 

  10. MacPherson, L.J. et al. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits . J. Med. Chem. 40, 2525– 2532 (1997).

    Article  CAS  Google Scholar 

  11. Roques, B.P. et al. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45, 87–146 (1993).

    CAS  Google Scholar 

  12. Roques, B.P., Noble, F., Crine, P. & Fournie-Zaluski, M.C. Inhibitors of neprilysin: design, pharmacological and clinical applications. Method. Enzymol. 248, 263–283 (1995).

    Article  CAS  Google Scholar 

  13. Turner, A.J. & Murphy, L.J. Molecular pharmacology of endothelin converting enzymes. Biochem. Pharmacol. 51, 91–102 (1996).

    Article  CAS  Google Scholar 

  14. Turner, A.J., Murphy, L.J., Medeiros, M.S. & Barnes, K. Endopeptidase-24.11 (neprilysin) and relatives: twenty years on. Adv. Exp. Med. Biol. 389, 141–148 (1996).

    Article  CAS  Google Scholar 

  15. Turner, A.J. & Tanzawa, K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 11, 355 –364 (1997).

    Article  CAS  Google Scholar 

  16. Hersh, L.B. & Morihara, K. Comparison of subsite specificity of the mammalian neutral endopeptidase-24.11 (enkephalinase) to the bacterial neutral endopeptidase, thermolysin. J. Biol. Chem. 261, 6433–6437 (1986).

    CAS  Google Scholar 

  17. Pozsgay, M., Michaud, C., Liebman, M. & Orlowski, M. Substrate and inhibitor studies of thermolysin-like neutral metalloendopeptidase from kidney membrane fractions. Comparison with bacterial thermolysin. Biochemistry 25, 1292–1299 ( 1986).

    Article  CAS  Google Scholar 

  18. Howell, S., Nalbantoglu, J. & Crine, P. Neutral endopeptidase can hydrolyze β-amyloid(1-40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16, 647–652 ( 1994).

    Article  Google Scholar 

  19. Nishimura, K. & Hazato, T. Isolation and identification of an endogenous inhibitor of enkephalin-degrading enzymes from bovine spinal cord . Biochem. Biophys. Res. Commun. 194, 713 –719 (1993).

    Article  CAS  Google Scholar 

  20. Orlowski, M. & Wilk, S. Purification and specificity of a membrane-bound metalloendopeptidase from bovine pituitaries. Biochemistry 20, 4942–4950 (1981).

    Article  CAS  Google Scholar 

  21. Morishima-Kawashima, M. & Ihara, Y. The presence of amyloid β-protein in the detergent-insoluble membrane compartment of human neuroblostoma cells. Biochemistry 37, 15247–15253 (1998).

    Article  CAS  Google Scholar 

  22. Duff, K. et al. Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710– 713 (1996).

    Article  CAS  Google Scholar 

  23. Ida, N., Masters, C.L. & Beyreuther, K. Rapid cellular uptake of Alzheimer amyloid βA4 peptide by cultured neuroblastoma cells. FEBS Lett. 394, 174–178 (1996).

    Article  CAS  Google Scholar 

  24. Qiu, W.W. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem. 273, 32730 –32738 (1998).

    Article  CAS  Google Scholar 

  25. Yamin, R. et al. Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer's amyloid-β peptide degradation. J. Biol. Chem. 274, 18777–18784 (1999).

    Article  CAS  Google Scholar 

  26. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 ( 1996).

    Article  CAS  Google Scholar 

  27. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  Google Scholar 

  28. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99– 102 (1996).

    Article  CAS  Google Scholar 

  29. Saido, T.C. et al. Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 14, 457–466 ( 1995).

    Article  CAS  Google Scholar 

  30. Beavis, R.C., Chaudary, T. & Chait, B.T. α-Cyano-4-hydroxy cinematic acid as a matrix for matrix-assisted laser desorption mass spectrometry. Org. Mass Spectrom. 27, 156–158 ( 1992).

    Article  CAS  Google Scholar 

  31. Vorm, O., Roepstorff, P. & Mann, M. Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal. Chem. 66, 3281–3287 (1994).

    Article  CAS  Google Scholar 

  32. Chang, C.D. & Neienhofer, J. Solid-phase synthesis using mild base cleavage of Nα-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int. J. Pept. Protein Res. 11, 246–249 ( 1978).

    Article  CAS  Google Scholar 

  33. Paxinos, G., and Watson, C. The Rat Brain in Stereotaxic Coordinates (San Diego, California: Academic Press, 1986).

    Google Scholar 

  34. McDermott, J.R. & Gibson, A.M. Degradation of Alzheimer's β-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem. Res. 22, 49–56 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Ihara for supporting and criticizing our work. We also thank H. Uchino and T. Iwatsubo for technical advice and W. Harigaya and Y. Dohzono for secretarial assistance. We also thank M. Ito and the Brain Science Planning Office for support. This work was supported by research grants from RIKEN BSI, Special Coordination Funds for promoting Science and Technology of STA, CREST, Ministry of Health and Welfare, Ministry of Education, Chugai Pharmaceutical Co., Mitsubishi Chemical Co., and Takeda Chemical Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi C. Saido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, N., Tsubuki, S., Takaki, Y. et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nat Med 6, 143–150 (2000). https://doi.org/10.1038/72237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing