Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes

Abstract

Mice carrying mitochondrial DNA (mtDNA) with pathogenic mutations would provide a system in which to study how mutant mtDNAs are transmitted and distributed in tissues, resulting in expression of mitochondrial diseases. However, no effective procedures are available for the generation of these mice. Isolation of mouse cells without mtDNA (ρ0) enabled us to trap mutant mtDNA that had accumulated in somatic tissues into ρ0 cells repopulated with mtDNA (cybrids). We isolated respiration-deficient cybrids with mtDNA carrying a deletion and introduced this mtDNA into fertilized eggs. The mutant mtDNA was transmitted maternally, and its accumulation induced mitochondrial dysfunction in various tissues. Moreover, most of these mice died because of renal failure, suggesting the involvement of mtDNA mutations in the pathogeneses of new diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic characterization of ΔmtDNA4696 in somatic cells.
Figure 2: Experimental scheme for producing heteroplasmic mice possessing wild-type mtDNA and exogenously introduced ΔmtDNA4696 from Cy4696 cybrids.
Figure 3: Transmission and distribution of ΔmtDNA4696 in F0–F3 mice.
Figure 4: Detection of a partially duplicated mtDNA and its distribution in tissues of F0–F3 generations.
Figure 5: Histochemical and morphological abnormalities observed in mice with predominant amounts of the mutant mtDNA.
Figure 6: Biochemical abnormalities of blood in mice with the mutant mtDNA.

Similar content being viewed by others

References

  1. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Larsson, N.-G. & Clayton, D.A. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi, J.-I. et al. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 88, 10614–10618 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chomyn, A. et al. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol. Cell. Biol. 11, 2236–2244 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. King, M.P., Koga, Y., Davidson, M. & Schon, E.A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNALeu(UUR) mutation associated with mitochondrial myopathy encephalopathy, lactic acidosis, and strokelike episodes. Mol. Cell. Biol. 12, 480–490 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoneda, M., Miyatake, T. & Attardi, G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell with distinct organelles. Mol. Cell. Biol. 14, 2699–2712 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito, S. et al. Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer's disease. Proc. Natl Acad. Sci. USA 96, 2099–2103 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inoue, K. et al. Isolation of mitochondrial DNA-less mouse cell lines and their application for trapping mouse synaptosomal mitochondrial DNA with deletion mutations. J. Biol. Chem. 272, 15510–15515 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Inoue, K. et al. Isolation and characterization of mitochondrial DNA-less lines from various mammalian cell lines by application of an anticancer drug, ditercalinium. Biochem. Biophys. Res. Commun. 239, 257–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, I., Gerasimov, S., Marsac, C., Lestienne, P. & Boursot, P. Sequence analysis of a deleted mitochondrial DNA molecule in heteroplasmic mice. Mamm. Genome 4, 680–683 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Tanhauser, S.M. & Laipis, P.J. Multiple deletions are detectable in mitochondrial DNA of aging mice. J. Biol. Chem. 270, 24769–24775 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Clayton, D.A, & Vinograd, J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature 216, 652–657 (1967).

    Article  CAS  PubMed  Google Scholar 

  13. Kaneda, H. et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl Acad. Sci. USA 92, 4542–4546 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shitara, H. et al. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148, 851–857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Poulton, J., Deadman, M.E. & Gardiner, R.M. Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet 1, 236–240 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Rotig, A. et al. Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes mellitus, and cerebellar ataxia. Am. J. Hum. Genet. 50, 364–370 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dunbar, D.R. et al. Maternally transmitted partial direct tandem duplication of mitochondrial DNA associated with diabetes mellitus. Hum. Mol. Genet. 10, 1619–1624 (1993).

    Article  Google Scholar 

  18. Ballinger, S.W., Shoffner, J.M., Gebhart, S., Koontz, D.A. & Wallace, D.C. Mitochondrial diabetes revisited. Nature Genet. 7, 458–459 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi, J.-I., Takemitsu, M., Goto, Y.-i. & Nonaka, I. Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J. Cell Biol. 125, 43–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Takai, D. et al. Interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J. Biol. Chem. 272, 6028–6033 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Jansen, J.J. et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J. Am. Soc. Nephrol. 8,1118–1124 (1997).

    CAS  PubMed  Google Scholar 

  22. Szabolcs, M.J. et al. Mitochondrial DNA deletion: a cause of chronic tubulointerstitial nephropathy. Kidney Int. 45, 1388–1396 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Pinkert, C.A., Irwin, M.H., Johnson, L.W. & Moffatt, R.J. Mitochondria transfer into mouse ova by microinjection. Transgenic Res. 6, 379–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Irwin, M.H., Johnson, L.W. & Pinkert, C.A. Isolation and microinjection of somatic cell derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgenic Res. 8, 119–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Shitara, H. et al. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics (in press).

  26. Volz-Lingenhohl, A., Solignac, M. & Sperlich, D. Stable heteroplasmy for a large-scale deletion in the coding region of Drosophila subobscura mitochondrial DNA. Proc. Natl Acad. Sci. USA 89, 11528–11532 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goto, Y.-i., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Shoffner, J.M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Holt, I.J., Harding, A. & Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J. et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nature Genet. 21, 133–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Marchington, D.R., Barlow, D. & Poulton, J. Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease. Nature Med. 5, 957–960 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Levy, S.E., Waymire, K.G., Kim, Y.L., MacGregor, G.R. & Wallace, D.C. Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res. 8, 137–145 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaoka, M. et al. Complete repopulation of mouse mitochondrial DNA-less cells with rat mitochondrial DNA restores mitochondrial translation but not mitochondrial respiratory functions. Genetics 155, 301–307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyabayashi, S. et al. Cytochrome c oxidase deficiency in two siblings with Leigh encephalomyelopathy. Brain Dev. 6, 362–372 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ichi Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Nakada, K., Ogura, A. et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26, 176–181 (2000). https://doi.org/10.1038/82826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing