Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?

Abstract

MicroRNAs (miRNAs) were discovered more than a decade ago as noncoding, single-stranded small RNAs (22 nucleotides) that control the timed gene expression pattern in Caenorhabditis elegans life cycle. A number of these evolutionarily conserved, endogenous miRNAs have been shown to regulate mammalian cell growth, differentiation and apoptosis. miRNAs are multispecific by nature. The individual miRNA is capable of modulating the expression of a network of mRNAs that it binds by imperfect sequence complementarity. Human cancers commonly exhibit an altered expression profile of miRNAs with oncogenic (miR-21, miR-106a and miR-155) or tumor-suppressive (let-7, miR-15a/16, miR-34a and miR-143/145) activity. As consistent with the natural function of miRNAs in specifying cellular phenotype, miRNA-based cancer gene therapy offers the theoretical appeal of targeting multiple gene networks that are controlled by a single, aberrantly expressed miRNA. Reconstitution of tumor-suppressive miRNA, or sequence-specific knockdown of oncogenic miRNAs by ‘antagomirs,’ has produced favorable antitumor outcomes in experimental models. We discuss pending issues that need to be resolved prior to the consideration of miRNA-based experimental cancer gene therapy. These include the need for definitive mRNA target validation, our incomplete understanding of rate-limiting cellular components that impact the efficiency of this posttranscriptional gene-silencing phenomenon, the possibility for nonspecific immune activation and the lack of a defined, optimal mode of delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V . The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    CAS  PubMed  Google Scholar 

  2. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    CAS  PubMed  Google Scholar 

  3. Harfe BD . MicroRNAs in vertebrate development. Curr Opin Genet Dev 2005; 15: 410–415.

    CAS  PubMed  Google Scholar 

  4. Bilen J, Liu N, Bonini NM . A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins. Cell Cycle 2006; 5: 2835–2838.

    CAS  PubMed  Google Scholar 

  5. Mathupala SP, Guthikonda M, Sloan AE . RNAi based approaches to the treatment of malignant glioma. Technol Cancer Res Treat 2006; 5: 261–269.

    CAS  PubMed  Google Scholar 

  6. Zeng Y, Yi R, Cullen BR . MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003; 100: 9779–9784.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang G . siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005; 30: 106–114.

    CAS  PubMed  Google Scholar 

  8. Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.

    CAS  PubMed  Google Scholar 

  9. Salzman DW, Shubert-Coleman J, Furneaux H . P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7 directed silencing of gene expression. J Biol Chem 2007; 282: 32773–32779.

    CAS  PubMed  Google Scholar 

  10. Khvorova A, Reynolds A, Jayasena S . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    CAS  PubMed  Google Scholar 

  11. Chiu YL, Rana TM . RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10: 549–561.

    CAS  PubMed  Google Scholar 

  12. Sethupathy P, Corda B, Hatzigeorgiou AG . TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 2006; 12: 192–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185–197.

    CAS  PubMed  Google Scholar 

  14. Peters L, Meister G . Argonaute proteins: mediators of RNA silencing. Mol Cell 2007; 26: 611–623.

    CAS  PubMed  Google Scholar 

  15. Rana TM . Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8: 23–36.

    CAS  PubMed  Google Scholar 

  16. Pillai R, Bhattacharyya S, Filipowicz W . Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2006; 17: 118–126.

    Google Scholar 

  17. Tang G . siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005; 30: 106–114.

    CAS  PubMed  Google Scholar 

  18. Brennecke J, Stark A, Russell RB, Cohen SM . Principles of microRNA-target recognition. PLoS Biol 2005; 3: e85.

    PubMed  PubMed Central  Google Scholar 

  19. Sethupathy P, Corda B, Hatzigeorgiou AG . A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 2006; 3: 881–886.

    CAS  PubMed  Google Scholar 

  20. Chu CY, Rana TM . Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 2006; 4: e210.

    PubMed  PubMed Central  Google Scholar 

  21. Sen GL, Blau HM . Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 2005; 7: 633–636.

    CAS  PubMed  Google Scholar 

  22. Wu L, Fan J, Belasco J . MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006; 103: 4034–4039.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Giraldez A, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312: 75–79.

    CAS  PubMed  Google Scholar 

  24. Lai EC, Tam B, Rubin GM . Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 2005; 19: 1067–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hua Z, Lv Q, Ye W, Wong CA, Caii G, Gu D et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS one 2006; 1: e116.

    PubMed  PubMed Central  Google Scholar 

  26. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    CAS  PubMed  Google Scholar 

  27. Fraser GB, Hirsh AE, Giaever G, Kumm J, Eisen MB . Noise minimization in eukaryotic gene expression. PLoS Biol 2004; 2: 2137.

    Google Scholar 

  28. Coller HA, Forman JJ, Legesse-Miller A . ‘Myc'ed messages’: Myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet 2007; 3: 3146.

    Google Scholar 

  29. Lin SL, Miller JD, Ying SY . Intronic microRNA (miRNA). J Biomed Biotechnol 2006; 2006: 26818.

    PubMed  PubMed Central  Google Scholar 

  30. Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J . Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006; 12 (7 Part 1): 2014–2024.

    CAS  PubMed  Google Scholar 

  31. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong JT, Boyd JC, Frierson Jr HF . Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 2001; 49: 166–171.

    CAS  PubMed  Google Scholar 

  34. McManus MT . MicroRNAs and cancer. Semin Cancer Biol 2003; 13: 253–258.

    CAS  PubMed  Google Scholar 

  35. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    CAS  PubMed  Google Scholar 

  36. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2098–2104.

    CAS  PubMed  Google Scholar 

  37. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 2006; 103: 9136–9141.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    CAS  PubMed  Google Scholar 

  39. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    CAS  PubMed  Google Scholar 

  40. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    CAS  PubMed  Google Scholar 

  41. Akao Y, Nakagawa Y, Naoe T . let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29: 903–906.

    CAS  PubMed  Google Scholar 

  42. Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 2007; 6: 2585–2590.

    CAS  PubMed  Google Scholar 

  43. Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M et al. Prediction and preliminary validation of oncogene regulation by miRNAs. BMC Mol Biol 2007; 8: 79.

    PubMed  PubMed Central  Google Scholar 

  44. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007; 67: 6092–6099.

    CAS  PubMed  Google Scholar 

  45. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1 arrest. Cell Cycle 2007; 6: 1586–1593.

    CAS  PubMed  Google Scholar 

  46. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–689.

    CAS  PubMed  Google Scholar 

  47. Gong H, Liu CM, Liu DP, Lian CC . The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med Res Rev 2005; 25: 361–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lawrie CH . MicroRNAs and haematology: small molecules, big function. Br J Haematol 2007; 137: 503–512.

    CAS  PubMed  Google Scholar 

  49. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5: 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    CAS  PubMed  Google Scholar 

  51. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–7070.

    CAS  PubMed  Google Scholar 

  52. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699–8707.

    CAS  PubMed  Google Scholar 

  53. Chan JA, Krichevsky AM, Kosik KS . MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–6033.

    CAS  PubMed  Google Scholar 

  54. Zhu S, Si ML, Wu H, Mo YY . MicroRNA-21 targets the tumor suppresosor gene tropomyosin 1 (TPM1). J Biol Chem 2007; 282: 14328–14336.

    CAS  PubMed  Google Scholar 

  55. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . miR-21-mediated tumor growth. Oncogene 2007; 26: 2799–2803.

    Article  CAS  PubMed  Google Scholar 

  56. Lui WO, Pourmand N, Patterson BK, Fire A . Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 2007; 67: 6031–6043.

    CAS  PubMed  Google Scholar 

  57. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T . MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647–658.

    CAS  PubMed  Google Scholar 

  58. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K . MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007; 67: 8994–9000.

    CAS  PubMed  Google Scholar 

  59. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007; 14: 791–798.

    CAS  PubMed  Google Scholar 

  60. Cheng AM, Byrom MW, Shelton J, Ford LP . Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33: 1290–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    CAS  PubMed  Google Scholar 

  62. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007; 67: 8433–8438.

    CAS  PubMed  Google Scholar 

  66. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    CAS  PubMed  Google Scholar 

  68. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC . Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 2007; 282: 1479–1486.

    CAS  PubMed  Google Scholar 

  69. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.

    CAS  PubMed  Google Scholar 

  70. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334: 1351–1358.

    CAS  PubMed  Google Scholar 

  71. Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, James RJ . Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–891.

    CAS  PubMed  Google Scholar 

  72. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T . Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 2007; 98: 1914–1920.

    CAS  PubMed  Google Scholar 

  73. Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y . Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem 2007; 15: 5620–5628.

    CAS  PubMed  Google Scholar 

  74. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007; 104: 16170–16175.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ . Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67: 7972–7976.

    CAS  PubMed  Google Scholar 

  76. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 28–33.

    Google Scholar 

  77. Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers U et al. N-myc regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 2008; 122: 699–704.

    CAS  PubMed  Google Scholar 

  78. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007; 26: 3699–3708.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005; 102: 19075–19080.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007; 282: 23716–23724.

    CAS  PubMed  Google Scholar 

  81. Gillies JK, Lorimer IA . Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007; 6: 2005–2009.

    CAS  PubMed  Google Scholar 

  82. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124: 1169–1181.

    CAS  PubMed  Google Scholar 

  83. Saestrom P, Snove Jr O, Rossi JJ . Epigenetics and microRNAs. Pediatr Res 2007; 61 (5 Part 2): 17R–23R.

    Google Scholar 

  84. Shukla S, Naumov I, Hameiri-Grossman M, Cohen IJ, Ash S, Yaniv I et al. Methylation analysis of specific microRNAs in Ewing's Sarcoma (abstract). AACR Proceedings 2007; 48: 2862.

    Google Scholar 

  85. Lujambio A, Esteller M . CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 2007; 6: 1455–1459.

    CAS  PubMed  Google Scholar 

  86. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 2007; 67: 1419–1423.

    CAS  PubMed  Google Scholar 

  87. Weber B, Stresemann C, Brueckner B, Lyko F . Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 2007; 6: 1001–1005.

    CAS  PubMed  Google Scholar 

  88. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakamura T, Canaani E, Croce CM . Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA 2007; 104: 10980–10985.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111–115.

    CAS  PubMed  Google Scholar 

  91. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–217.

    CAS  PubMed  Google Scholar 

  92. Van Rooji E, Olson EN . MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007; 117: 2369–2376.

    Google Scholar 

  93. Rosenfeld N, Chajut A, Meiri E, Zepeniuk M, Shabes N, Tabak S et al. MicroRNA signature for identification of tumor origin. AACR Proceedings 2007; 48: LB–160.

    Google Scholar 

  94. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004; 101: 9740–9744.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z . Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004; 1: 155–161.

    CAS  PubMed  Google Scholar 

  96. Barad O, Meieri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 12: 2486–2494.

    Google Scholar 

  97. Grosshans H, Slack FJ . Micro-RNAs: small is plentiful. J Cell Biol 2002; 156: 17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    CAS  PubMed  Google Scholar 

  99. Nemunaitis J, Klemow S, Tong A, Courtney A, Johnston W, Mack M et al. Prognostic value of K-ras mutations, ras oncoprotein and c-erbB-2 oncoprotein expression in adenocarcinoma of the lung. Am J Clin Oncol 1998; 21: 155–160.

    CAS  PubMed  Google Scholar 

  100. Weidnaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. MicroRNA as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67: 11111–11116.

    Google Scholar 

  101. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111–115.

    CAS  PubMed  Google Scholar 

  102. Fang W, Lin C, Zhang H, Qian J, Zhong L, Xu N et al. Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-center experience from China. J Int Med Res 2007; 35: 716–723.

    CAS  PubMed  Google Scholar 

  103. Zhang HH, Wang XJ, Li GX, Yang E, Yang NM . Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol 2007; 13: 2883–2888.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Guo Y, Chen Y, Ito H . Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 2006; 384: 51–61.

    CAS  PubMed  Google Scholar 

  105. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2006; 315: 1576–1579.

    Google Scholar 

  106. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverse MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    CAS  PubMed  Google Scholar 

  107. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38: 1060–1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2003; 435: 839–843.

    Google Scholar 

  110. Gírio A, Montero JC, Pandiella A, Chatterjee S . Erk5 is activated and acts as a survival factor in mitosis. Cell Signal 2007; 19: 1964–1972.

    PubMed  Google Scholar 

  111. Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62: 4519–4524.

    CAS  PubMed  Google Scholar 

  112. Cao J, Cai X, Zheng L, Geng L, Shi Z, Pao CC et al. Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol 1997; 123: 447–451.

    CAS  PubMed  Google Scholar 

  113. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    CAS  PubMed  Google Scholar 

  114. Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R et al. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma 2003; 44 (Suppl 3): S5–S12.

    CAS  PubMed  Google Scholar 

  115. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  116. Nemunaitis J, Senzer N, Khalil I, Shen Y, Kumar P, Tong A et al. Proof of concept for clinical justification of network mapping for personalized cancer therapeutics. Cancer Gene Ther 2007; 14: 686–695.

    CAS  PubMed  Google Scholar 

  117. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    CAS  PubMed  Google Scholar 

  118. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081–18086.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    CAS  PubMed  Google Scholar 

  120. Tong AW, Zhang YA, Nemunaitis J . Small interfering RNA for experimental therapy. Curr Opin Mol Ther 2005; 7: 114–124.

    CAS  PubMed  Google Scholar 

  121. Sorensen DR, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327: 761–766.

    CAS  PubMed  Google Scholar 

  122. Novina CD, Sharp PA . The RNAi revolution. Nature 2004; 430: 161–164.

    CAS  PubMed  Google Scholar 

  123. Liu G, Wong-Stall F, Li QX . Development of new RNAi therapeutics. Histol Histopathol 2007; 2007: 211–217.

    Google Scholar 

  124. Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J et al. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed peritoneal metastasis. Biochem Biophys Res Commun 2006; 348: 229–237.

    CAS  PubMed  Google Scholar 

  125. Weiler J, Hunziker J, Hall J . Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Therapy 2005; 13: 496–502.

    Google Scholar 

  126. Meister G, Landthaler M, Dorsett Y, Tuschl T . Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 2004; 10: 544–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120: 1046–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O'Brien C et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 2007; 358: 12–17.

    CAS  PubMed  Google Scholar 

  129. Rossi L, Bonmassar E, Faraoni I . Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 2007; 56: 248–253.

    CAS  PubMed  Google Scholar 

  130. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2007; e-pub ahead of print 29 October 2007.

  131. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH . Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283: 1026–1033.

    CAS  PubMed  Google Scholar 

  132. Boyd J, Risinger JI, Wiseman RW, Merrick BA, Selkirk JK, Barrett JC . Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proc Natl Acad Sci USA 1995; 92: 11534–11538.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    PubMed  Google Scholar 

  134. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Senzer N et al. MicroRNA profiling for the identification of early relapse prostate cancer (submitted). 2007.

  135. Lanza G, Ferracin M, Gafà R, Veronese A, Spizzo R, Pichiorri F et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 2007; 6: 54.

    PubMed  PubMed Central  Google Scholar 

  136. Murakami Y . Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25: 2537–2545.

    CAS  PubMed  Google Scholar 

  137. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010.

    CAS  PubMed  Google Scholar 

  139. Zhu H, Guo W, Zhang L, Davis JJ, Teraishi F, Wu S et al. Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells. Mol Cancer Ther 2005; 4: 451–456.

    CAS  PubMed  Google Scholar 

  140. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    CAS  PubMed  Google Scholar 

  141. Sioud M, Sorensen DR . Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220–1225.

    CAS  PubMed  Google Scholar 

  142. Tan Y, Zhang JS, Huang L . Codelivery of NF-kappaB decoy-related oligodeoxy-nucleotide improves LPD-mediated systemic gene transfer. Mol Ther 2002; 6: 804–812.

    CAS  PubMed  Google Scholar 

  143. Lin E, Nemunaitis J . Oncolytic viral therapies. Cancer Gene Ther 2004; 11: 643–664.

    CAS  PubMed  Google Scholar 

  144. Zhang YA, Nemunaitis J, Samuel S, Chen P, Shen Y, Tong AW . Anti-tumor activity of an oncolytic adenovirus-delivered oncogene siRNA. Cancer Res 2006; 66: 9736–9743.

    CAS  PubMed  Google Scholar 

  145. Glover DJ, Lipps HJ, Jans DA . Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6: 299–310.

    CAS  PubMed  Google Scholar 

  146. Felnerova D, Viret JF, Gluck R, Moser C . Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15: 518–529.

    CAS  PubMed  Google Scholar 

  147. Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther 2006; 17: 117–124.

    CAS  PubMed  Google Scholar 

  148. Zhou R, Norton JE, Zhang N, Dean DA . Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Therapy 2007; 14: 775–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    CAS  PubMed  Google Scholar 

  150. Grimm D, Wang L, Lee JS, Storm TA, Kay MA . Argonaute-2 is a key limiting factor for therapeutic RNAi in the liver (abstract). Proc Am Soc Gene Ther 2007; 10: 1104.

    Google Scholar 

  151. Boudreau RL, Mas A, Harper SQ, Davidson BL . In vitro and in vivo evaluation of shRNAs and miRNA shuttles for therapeutic RNA. Proc Am Soc Gene Ther 2007; 10: 695.

    Google Scholar 

  152. Nielsen TT, van Marion I, Hasholt L, Lundberg C . Lentiviral RNAi-vectors utilizing Pol II-promoters for use in the brain (abstract). Proc Am Soc Gene Ther 2007; 10: 705.

    Google Scholar 

  153. Snove Jr O, Ross JJ . Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol 2006; 7: 231.

    PubMed  PubMed Central  Google Scholar 

  154. Judge AD, Sood V, Shaw JR, Fang D, Mcclintock K, MacLachlan I . Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457–462.

    CAS  PubMed  Google Scholar 

  155. Kim DH, Bejlke MA, Rose SD, Chang MS, Choi S, Rossi JJ . Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005; 23: 222–226.

    CAS  PubMed  Google Scholar 

  156. Epanchintsev A, Jung P, Menssen A, Hermeking H . Inducible microRNA expression by an all-in-one episomal vector system. Nucleic Acids Res 2006; 34: e119.

    PubMed  PubMed Central  Google Scholar 

  157. Dahlberg JE, Lund E . Micromanagement during the innate immune response. Sci STKE 2007; 2007: pe25.

    PubMed  Google Scholar 

  158. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604–608.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patrick Chen for his assistance in generating the graphical illustrations and Dr Anagha Phadke for the proofreading of this manuscript. This work was supported, in part, by the Mary Crowley Cancer Research Fund and the Jasper L and Jack Denton Wilson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A W Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, A., Nemunaitis, J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?. Cancer Gene Ther 15, 341–355 (2008). https://doi.org/10.1038/cgt.2008.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.8

Keywords

This article is cited by

Search

Quick links