Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas

Abstract

High-grade gliomas are among the most lethal of all cancers. Despite considerable advances in multimodality treatment, including surgery, radiotherapy and chemotherapy, the overall prognosis for patients with this disease remains dismal. Currently available treatments necessitate the development of more effective tumor-selective therapies. The use of gene therapy for malignant gliomas is promising, as it allows in situ delivery and selectively targets brain tumor cells while sparing the adjacent normal brain tissue. Viral vectors that deliver proapoptotic genes to malignant glioma cells have been investigated. Although tangible results on patients' survival remain to be further documented, significant advances in therapeutic gene transfer strategies have been made. Recently, cell-based gene delivery has been sought as an alternative method. In this paper, we report the proapoptotic effects of embryonic stem cell (ESC)-mediated mda-7/IL-24 delivery to malignant glioma cell lines. Our data show that these are similar to those observed using a viral vector. In addition, acknowledging the heterogeneity of malignant glioma cells and their signaling pathways, we assessed the effects of conventional treatment for high-grade gliomas, ionizing radiation and temozolomide, when combined with ESC-mediated transgene delivery. This combination resulted in synergistic effects on tumor cell death. The mechanisms involved in this beneficial effect included activation of both apoptosis and autophagy. Our in vitro data support the concept that ESC-mediated gene delivery might offer therapeutic advantages over standard approaches to malignant gliomas. Our results corroborate the theory that combined treatments exploiting different signaling pathways are needed to succeed in the treatment of malignant gliomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Abbreviations

Ad.mda-7:

adenovirus-mediated mda-7

CHOP/GADD153:

CCAAT/enhancer binding protein homologous transcription factor

Dox:

doxycyclin

ELISA:

Enzyme-linked immunosorbent assay

ESC:

embryonic stem cells

GBM:

Glioblastoma multiforme

IR:

ionizing radiation

JNK:

c-Jun N-terminal kinase

mda-7/IL-24:

melanoma differentiation associated gene-7/Interleukin-24

TMZ:

temozolomide

References

  1. CBTRUS. Statistical Report: Primary Brain Tumors in the United States, 1998-2002. Central Brain Tumor Registry of the United States: Chicago (IL), 2005-2006.

  2. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ . Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5–26.

    Article  Google Scholar 

  3. Benveniste R, Germano IM . Evaluation of factors predicting accurate resection of high-grade gliomas using frameless image-guided stereotactic guidance. Neurosurg Focus 2003; 14: E5.

    Article  Google Scholar 

  4. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 2008; 62: 564–576.

    Article  Google Scholar 

  5. Chiocca EA . Gene therapy: a primer for neurosurgeons. Neurosurgery 2003; 53: 364–373.

    Article  Google Scholar 

  6. Germano IM, Binello E . Gene therapy as an adjuvant treatment for malignant gliomas: from bench to bedside. J Neurooncol 2009; 93: 79–87.

    Article  CAS  Google Scholar 

  7. Kyritsis AP, Sioka C, Rao JS . Viruses, gene therapy and stem cells for the treatment of human glioma. Cancer Gene Ther 2009; 16: 741–752.

    Article  CAS  Google Scholar 

  8. Germano IM, Uzzaman M, Keller G . Gene delivery by embryonic stem cells for malignant gliomas. Cancer Biol Ther 2008; 7: 81–87.

    Article  Google Scholar 

  9. Benveniste RJ, Keller G, Germano IM . Embryonic stem cell-derived astrocytes expressing drug-inducible transgenes: differentiation and transplantation into the mouse brain. J Neurosurg 2005; 103: 115–123.

    Article  CAS  Google Scholar 

  10. Uzzaman M, Benveniste RJ, Keller G, Germano IM . Embryonic stem cell-derived astrocytes: a novel gene therapy vector for brain tumors. Neurosurg Focus 2005; 19: E6.

    Article  Google Scholar 

  11. Fisher P . Is mda-7/IL-24 a ‘Magic Bullet’ for Cancer? Cancer Res 2005; 65: 10128–10138.

    Article  CAS  Google Scholar 

  12. Ekmekcioglu S, Mumm JB, Udtha M, Chada S, Grimm EA . Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24. Cytokine 2008; 43: 34–44.

    Article  CAS  Google Scholar 

  13. Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D et al. Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA 2008; 105: 9763–9768.

    Article  CAS  Google Scholar 

  14. Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther 2008; 7: 297–313.

    Article  CAS  Google Scholar 

  15. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    Article  CAS  Google Scholar 

  16. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM . Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 2003; 98: 378–384.

    Article  CAS  Google Scholar 

  17. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  Google Scholar 

  18. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11: 448–457.

    Article  CAS  Google Scholar 

  19. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Meth 1995; 184: 39–51.

    Article  CAS  Google Scholar 

  20. Su ZZ, Lebedeva IV, Sarkar D, Emdad L, Gupta P, Kitada S et al. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells overexpressing the anti-apoptotic proteins bcl-x L or bcl-2. Oncogene 2006; 25: 2339–2348.

    Article  CAS  Google Scholar 

  21. Wen P, Kesari S . Malignant Gliomas in Adults. N Engl J Med 2008; 359: 492–507.

    Article  CAS  Google Scholar 

  22. Fiveash JB, Gillespie GY, Oliver PG, Zhou T, Belenky ML, Buchsbaum DJ . Enhancement of glioma radiotherapy and chemotherapy response with targeted antibody therapy against death receptor 5. Int J Radiat Oncol Biol Phys 2008; 71: 507–516.

    Article  CAS  Google Scholar 

  23. Mason WP, Maestro RD, Eisenstat D, Forsyth P, Fulton D, Laperrière N et al. Canadian recommendations for the treatment of glioblastoma multiforme. Curr Oncol 2008; 14: 110–117.

    Article  Google Scholar 

  24. Hutterer M, Gunsilius E, Stockhammer G . Molecular therapies for malignant gliomas. Wien Med Wochensch 2006; 156: 351–363.

    Article  Google Scholar 

  25. Germano IM, Uzzaman M, Benveniste RJ, Zaurova M, Keller G . Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand. J Neurosurg 2006; 105: 88–95.

    Article  CAS  Google Scholar 

  26. Giles GG, Gonzales MF . Epidemiology of brain tumors and factors in prognosis. Churchill Livingston: Edinburgh, 1995. pp 47–69.

  27. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  Google Scholar 

  28. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 2008; 26: 4189–4199.

    Article  CAS  Google Scholar 

  29. Park MA, Yacoub A, Sarkar D, Emdad L, Rahmani M, Spiegel S et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells. Autophagy 2008; 4: 513–515.

    Article  CAS  Google Scholar 

  30. Kim I, Xu W, Reed JC . Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7: 1013–1030.

    Article  CAS  Google Scholar 

  31. Ron D, Walter P . Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    Article  CAS  Google Scholar 

  32. Lisbona F, Rojas-Rivera D, Thielen P, Zamorano S, Todd D, Martinon F et al. BAX Inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol Cell 2009; 33: 679–691.

    Article  CAS  Google Scholar 

  33. Chakravarti A, Erkkinen MG, Nestler U, Stupp R, Mehta M, Aldape K et al. Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res 2006; 12: 4738–4746.

    Article  CAS  Google Scholar 

  34. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    Article  CAS  Google Scholar 

  35. Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS . The unfolded protein response regulartor GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007; 67: 9809–9816.

    Article  CAS  Google Scholar 

  36. Asano T, Ageyama N, Takeuchi K, Momoeda M, Kitano Y, Sasaki K et al. Engraftment and tumor formation after allogeneic in utero transplantation of primate embryonic stem cells. Transplantation 2003; 76: 1061–1067.

    Article  Google Scholar 

  37. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99: 2344–2349.

    Article  CAS  Google Scholar 

  38. Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003; 23: 780–785.

    Article  Google Scholar 

  39. Harkany T, Andang M, Kingma HJ, Gorcs TJ, Holmgren CD, Zilberter Y et al. Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. J Neurochem 2004; 88: 1229–1239.

    Article  CAS  Google Scholar 

  40. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology 2003; 42: 162–165.

    Article  CAS  Google Scholar 

  41. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003; 21: 1200–1207.

    Article  CAS  Google Scholar 

  42. Chiba S, Ikeda R, Kurokawa MS, Yoshikawa H, Takeno M, Nagafuchi H et al. Anatomical and functional recovery by embryonic stem cell-derived neural tissue of a mouse model of brain damage. J Neurol Sci 2004; 219: 107–117.

    Article  CAS  Google Scholar 

  43. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P . Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 2006; 26: 6781–6790.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Paul B Fisher (Virginia Commonwealth University, Richmond, VA) generously provided the mda-7/IL-24 gene and Ad.mda-7. Temozolomide was supplied by Schering-Plough (Kelinworth, NJ). Dr Gordon Keller was instrumental in providing guidance for ESC differentiation into astrocytes previously published by the same authors and used in this work. Grant support: The present research was supported by the National Institute of Health and by the National Cancer Institute NIH/NCI R01 CA129489-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I M Germano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germano, I., Emdad, L., Qadeer, Z. et al. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas. Cancer Gene Ther 17, 664–674 (2010). https://doi.org/10.1038/cgt.2010.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.31

Keywords

This article is cited by

Search

Quick links