Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter

Abstract

We exploited the differential activation of hypoxia-inducible factor (HIF)-dependent gene expression in tumors versus normal tissue for the design of a targeted oncolytic herpes simplex virus type-1 (HSV-1). A gene that is essential for viral replication, infected cell polypeptide 4 (ICP4), was placed under the regulation of an HIF-responsive promoter and then introduced into the thymidine kinase locus (UL23) of HSV d120, which contains partial deletions in the two endogenous ICP4 genes. Recombinant HIF-HSV was isolated and their derivation from d120 was verified by expression of a truncated, non-functional form of ICP4 protein. Disruption of the UL23 locus was confirmed by loss of thymidine kinase expression and resistance to acyclovir. Unexpectedly, HIF-HSV expressed ICP4 and induced tumor cell lysis at similar levels under normoxia and hypoxia. The lack of HIF-dependent ICP4 transgene expression by HIF-HSV was due to two factors that have not previously been reported—reversion of the ICP4 gene region to its wild-type configuration and increased HIF-transcriptional activity under normoxia when cells were infected with any strain of HSV-1. The findings that an oncolytic HSV-1 is genetically unstable and can activate a tumor-related promoter in a non-specific manner have important implications for any proposed use of this virus in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

HSV-1:

herpes simplex virus-1

HIF:

hypoxia-inducible factor

HRE:

HIF-responsive DNA element

MOI, multiplicity of infection; ACV:

acyclovir

TK:

thymidine kinase

ICP4:

infected cell polypeptide 4

References

  1. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.

    CAS  PubMed  Google Scholar 

  2. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rankin EB, Giaccia AJ . The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008; 15: 678–685.

    Article  CAS  PubMed  Google Scholar 

  5. Brown JM . Tumor hypoxia in cancer therapy. Methods Enzymol 2007; 435: 297–321.

    CAS  PubMed  Google Scholar 

  6. Semenza GL . Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 2007; 12: 853–859.

    Article  CAS  PubMed  Google Scholar 

  7. Bardos JI, Ashcroft M . Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 2005; 1755: 107–120.

    CAS  PubMed  Google Scholar 

  8. Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC . Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother 2009; 9: 505–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY . Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17: 1125–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardcastle J, Kurozumi K, Chiocca EA, Kaur B . Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 2007; 7: 181–189.

    Article  CAS  PubMed  Google Scholar 

  11. DeLuca NA, McCarthy AM, Schaffer PA . Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 1985; 56: 558–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Miyatake S, Iyer A, Martuza RL, Rabkin SD . Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol 1997; 71: 5124–5132.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyatake SI, Tani S, Feigenbaum F, Sundaresan P, Toda H, Narumi O et al. Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Ther 1999; 6: 564–572.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamura H, Hashio M, Noguchi M, Sugenoya Y, Osakada M, Hirano N et al. Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors. Cancer Res 2001; 61: 3969–3977.

    CAS  PubMed  Google Scholar 

  15. Kuroda T, Rabkin SD, Martuza RL . Effective treatment of tumors with strong beta-catenin/T-cell factor activity by transcriptionally targeted oncolytic herpes simplex virus vector. Cancer Res 2006; 66: 10127–10135.

    Article  CAS  PubMed  Google Scholar 

  16. Mullen JT, Kasuya H, Yoon SS, Carroll NM, Pawlik TM, Chandrasekhar S et al. Regulation of herpes simplex virus 1 replication using tumor-associated promoters. Ann Surg 2002; 236: 502–512.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Griffith C, Noonan S, Lou E, Shillitoe EJ . An oncolytic mutant of herpes simplex virus type-1 in which replication is governed by a promoter/enhancer of human papillomavirus type-16. Cancer Gene Ther 2007; 14: 985–993.

    Article  CAS  PubMed  Google Scholar 

  18. Post DE, Van Meir EG . Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 2001; 8: 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  19. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999; 9: 469–479.

    Article  CAS  PubMed  Google Scholar 

  20. Post DE, Devi NS, Li Z, Brat DJ, Kaur B, Nicholson A et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin Cancer Res 2004; 10: 8603–8612.

    Article  CAS  PubMed  Google Scholar 

  21. Smith CA, Schaffer PA . Mutants defective in herpes simplex virus type 2 ICP4: isolation and preliminary characterization. J Virol 1987; 61: 1092–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Post DE, Van Meir EG . A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22: 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  23. Su YH, Zhang X, Wang X, Fraser NW, Block TM . Evidence that the immediate-early gene product ICP4 is necessary for the genome of the herpes simplex virus type 1 ICP4 deletion mutant strain d120 to circularize in infected cells. J Virol 2006; 80: 11589–11597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Post DE, Sandberg EM, Kyle MM, Devi NS, Brat DJ, Xu Z et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007; 67: 6872–6881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cherry T, Longo SL, Tovar-Spinoza Z, Post DE . Second-generation HIF-activated oncolytic adenoviruses with improved repliction, oncolytic, and anti-tumor efficacy. Gene Ther 2010; e-pub ahead of print 22 July 2010, doi:10.1038/gt.2010.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zinkernagel AS, Johnson RS, Nizet V . Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 2007; 85: 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  27. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS . Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 2004; 24: 5223–5234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I et al. EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 2006; 66: 9870–9877.

    Article  CAS  PubMed  Google Scholar 

  29. Carroll PA, Kenerson HL, Yeung RS, Lagunoff M . Latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 2006; 80: 10802–10812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA et al. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 2000; 60: 4873–4880.

    CAS  PubMed  Google Scholar 

  31. Cai Q, Murakami M, Si H, Robertson ES . A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi's sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol 2007; 81: 10413–10423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai Q, Lan K, Verma SC, Si H, Lin D, Robertson ES . Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: latency control under low oxygen conditions. J Virol 2006; 80: 7965–7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin YC, Joo CH, Gack MU, Lee HR, Jung JU . Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res 2008; 68: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  34. Deshmane SL, Mukerjee R, Fan S, Del VL, Michiels C, Sweet T et al. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 2009; 284: 11364–11373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nasimuzzaman M, Waris G, Mikolon D, Stupack DG, Siddiqui A . Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J Virol 2007; 81: 10249–10257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomita M, Semenza GL, Michiels C, Matsuda T, Uchihara JN, Okudaira T et al. Activation of hypoxia-inducible factor 1 in human T-cell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells. Biochem J 2007; 406: 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo YG, Oh SH, Park ES, Cho H, Lee N, Park H et al. Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway. J Biol Chem 2003; 278: 39076–39084.

    Article  CAS  PubMed  Google Scholar 

  38. Yoo YG, Cho S, Park S, Lee MO . The carboxy-terminus of the hepatitis B virus X protein is necessary and sufficient for the activation of hypoxia-inducible factor-1alpha. FEBS Lett 2004; 577: 121–126.

    Article  CAS  PubMed  Google Scholar 

  39. Hagglund R, Roizman B . Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 2004; 78: 2169–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14: 34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A et al. Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst 2004; 96: 946–956.

    Article  CAS  PubMed  Google Scholar 

  42. Li L, Lin X, Staver M, Shoemaker A, Semizarov D, Fesik SW et al. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 2005; 65: 7249–7258.

    Article  CAS  PubMed  Google Scholar 

  43. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T . Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 2007; 67: 4157–4163.

    Article  CAS  PubMed  Google Scholar 

  44. Liao D, Corle C, Seagroves TN, Johnson RS . Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 2007; 67: 563–572.

    Article  CAS  PubMed  Google Scholar 

  45. Kondo K, Kim WY, Lechpammer M, Kaelin Jr WG . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000; 60: 4010–4015.

    CAS  PubMed  Google Scholar 

  47. Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4: 133–146.

    Article  CAS  PubMed  Google Scholar 

  48. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394: 485–490.

    Article  CAS  PubMed  Google Scholar 

  49. Moon EJ, Jeong CH, Jeong JW, Kim KR, Yu DY, Murakami S et al. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. FASEB J 2004; 18: 382–384.

    Article  CAS  PubMed  Google Scholar 

  50. Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A et al. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 2008; 16: 1382–1391.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant support was provided by the NIH to DEP (NS49300) and EJS (DE017611). We thank Neil DeLuca (E5 cells, HSV-1 d120 virus) and Samuel Rabkin (pTKΔL plasmid) for providing critical reagents; Emily Wright and Amanda Magee for assistance with the western blot and HIF-transcriptional activity assays and David Padalino and Amanda Magee for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Post.

Ethics declarations

Competing interests

Dawn Post is co-inventor on intellectual property that relates to this work. Title of patent: Viruses targeted to hypoxic cells and tissues. Patent numbers: US 7,285,414, Europe 1328291, Australia 2001-294793, Canada 2,423,833, and Japan 2002-530023.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, S., Griffith, C., Glass, A. et al. Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther 18, 123–134 (2011). https://doi.org/10.1038/cgt.2010.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.62

Keywords

This article is cited by

Search

Quick links