Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita)

Abstract

Thomsen's disease (autosomal dominant myotonia congenita) has recently been linked to chromosome 7q35 in the region of the human skeletal muscle chloride channel gene (HUMCLC). Single strand conformation polymorphism analysis (SSCP) was used to screen DNA from members of four unrelated pedigrees with this disorder for mutations in HUMCLC. Abnormal bands were detected in all affected, but no unaffected individuals in three of the families. Direct sequencing revealed a G to A transition that results in the substitution of a glutamic acid for a glycine residue located between the third and fourth predicted membrane spanning segments. This glycine residue is conserved in all known members of this class of chloride channel proteins. These findings establish HUMCLC as the Thomsen's disease gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomson, J. Tonische Krämpfe in willkürlich beweglichen Muskeln in Folge von ererbter psychischer Disposition. Arch. Psychiat. Nervenkr. 6, 702–718 (1876).

    Article  Google Scholar 

  2. Streib, E.W. Differential diagnosis of myotonic syndromes. Muscle Nerve 10, 603–615 (1987).

    Article  CAS  Google Scholar 

  3. Becker, P.E. Syndromes associated with myotonia: Clinical-genetic classification. In Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L.P.) 699–714 (Exerpta Medica, Amsterdam, 1977).

    Google Scholar 

  4. Bryant, S.H. The physiological basis of myotonia. In Pathogenesis of Human Muscular Dystrophies (ed. Rowland, L.P.) 715–728 (Exerpta Medica, Amsterdam, 1977).

    Google Scholar 

  5. Bryant, S.H. Myotonia in the goat. Ann. N. Y. Acad. Sci. 317, 314–325 (1979).

    Article  CAS  Google Scholar 

  6. Mehrke, G., Brinkmeier, H. & Jockusch, H. The myotonic mouse mutant ADR: Electrophysiology of the muscle fiber. Muscle Nerve 11, 440–446 (1988).

    Article  CAS  Google Scholar 

  7. Bretag, A.H. Mathematical modelling of the myotonic action potential. In New Developments in Electromyography and Clinical Electrophysiology (ed. Desmedt, J.E.) 464–482 (S. Karger, Basel, 1973).

    Google Scholar 

  8. Barchi, R.L. Myotonia An evaluation of the chloride hypothesis. Arch. Neurol. 32, 175–180 (1975).

    Article  CAS  Google Scholar 

  9. Bryant, S.H. & Morales-Aguilera, A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J. Physiol. 219, 361–383 (1971).

    Article  Google Scholar 

  10. Palade, P.T. & Barchi, R.L. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J. gen Physiol. 69, 879–896 (1977).

    Article  CAS  Google Scholar 

  11. Furman, R.E. & Barchi, R.L. The pathophysiology of myotonia produced by aromatic carboxylic acids. Ann. Neurol. 4, 357–365 (1978).

    Article  CAS  Google Scholar 

  12. Lipicky, R.J. & Bryant, S.H. A biophysical study of the human myotonias. In New Developments in Electromyography and Clinical Neurophysiology (ed. Desmedt, J.E.) 451–463 (S. Karger, Basel 1973).

    Google Scholar 

  13. Lipicky, R.J. Myotonic syndromes other than myotonic dystrophy. In Handbook of Clinical Neurology, (ed. Vinken, P.J. and Bruyn, G.W.) 533–571 (North-Holland Publishing Co., Amsterdam, 1979).

    Google Scholar 

  14. Franke, C. et al. Altered Na+ channel activity and reduced Cl− conductance cause hyperexcitability in recessive generalized myotonia (Becker). Muscle Nerve 14, 762–770 (1991).

    Article  CAS  Google Scholar 

  15. Iaizzo, P.A., et al. Altered sodium channel behaviour causes myotonia in dominantly inherited myotonia congenita. Neuromusc. Dis. 1, 47–53 (1991).

    Article  CAS  Google Scholar 

  16. Jentsch, T.J., Steinmeyer, K. & Schwarz, G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510–514 (1990).

    Article  CAS  Google Scholar 

  17. Steinmeyer, K., Ortland, C. & Jentsch, T.J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354, 301–304 (1991).

    Article  CAS  Google Scholar 

  18. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991).

    Article  CAS  Google Scholar 

  19. Koch, M.C. et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800 (1992).

    Article  CAS  Google Scholar 

  20. Abdalla, J.A. et al. Linkage of Thorpsen's disease to the TCRB locus on chromosome 7q35. Am. J. hum. Genet. 51, 579–584 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  22. Palade, P.T. & Barchi, R.L. Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J. gen. Physiol. 69, 325–342 (1977).

    Article  CAS  Google Scholar 

  23. Adrian, R.H. & Bryant, S.H. On the repetitive discharge in myotonic muscle fibres. J. Physiol. 240, 505–515 (1974).

    Article  CAS  Google Scholar 

  24. Rudel, R. & Lehmann-Horn, F. Membrane changes in cells from myotonia patients. Physiol. Rev. 65, 310–356 (1985).

    Article  CAS  Google Scholar 

  25. Becker, P.E. Heterozygote manifestation in recessive generalized myotonia. Hum. Genet. 46, 325–329 (1979).

    Article  CAS  Google Scholar 

  26. Heinemann, S.H. et al. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992).

    Article  CAS  Google Scholar 

  27. MacKinnon, R. & Yellen, G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250, 276–279 (1990).

    Article  CAS  Google Scholar 

  28. Barchi, R.L. A mechanistic approach to the myotonic syndromes. Muscle Nerve 5, S60–S63 (1982).

    Article  CAS  Google Scholar 

  29. Ptacek, L.J. et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67, 1021–1027 (1991).

    Article  CAS  Google Scholar 

  30. Rojas, C.V. et al. A Met-to-Val mutation in the skeletal muscle Na+ channel α- subuntt in hyperkalemic periodic paralysis. Nature 354, 387–389 (1991).

    Article  CAS  Google Scholar 

  31. McClatphey, A.I. et al. Temperature-sensitive mutations in the III-IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell 68, 769–774 (1992).

    Article  Google Scholar 

  32. Ptacek, L.J. et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel gene cause paramyotonia congenita. Neuron 8, 891–897 (1992).

    Article  CAS  Google Scholar 

  33. Byers, P.H., Wallis, G.A. & Willing, M.C. Osteogensis imperfecta: translation of mutation to phenotype. J. med. Genet. 28, 433–442 (1991).

    Article  CAS  Google Scholar 

  34. Rosenfeld, P.J. et al. Nature Genet. 1, 209–213 (1992).

    Article  CAS  Google Scholar 

  35. Vogelstein, B. & Gillespie, D. Preparative and analytical purification of DNA from agarose. Proc. natn. Acad Sci U.S.A. 76, 615–619 (1979).

    Article  CAS  Google Scholar 

  36. Benton, W.D. & Davis, R.W. Screening lambda-gt recombinant clones by hybridization to single plaques in situ. Science 196, 180–182 (1977).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor, New York, 1989).

    Google Scholar 

  38. Ott, J. Analysis of human genetic linkage, (Johns Hopkins University Press, Baltimore, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, A., Crackower, M., Abdalla, J. et al. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet 3, 305–310 (1993). https://doi.org/10.1038/ng0493-305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0493-305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing