Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies

Abstract

The early growth response 2 gene (EGR2) is part of a multigene family encoding Cys2His2 type zinc-finger proteins and may play a role in the regulation of cellular proliferation1,2. Egr2, (also known as Krox20) is the mouse orthologue of human EGR2 and was first identified as an immediate-early response gene, encoding a protein that binds DNA in a sequence-specific manner and acts as a transcription factor3–6. Stable expression of Egr2 is specifically associated with the onset of myelination in the peripheral nervous system (PNS; ref.7). Egr2−/− mice display disrupted hindbrain segmentation and development8,9, and a block of Schwann-cell differentiation at an early stage10. We hypothesized that Egr2 may be a transcription factor affecting late myelin genes and that human myelinopathies of the PNS may result from mutations in EGR2. In support of this hypothesis, we have identified one recessive and two dominant missense mutations in EGR2 (within regions encoding conserved functional domains) in patients with congenital hypomyelinating neuropathy (CHN) and a family with Charcot-Marie-Tooth type 1 (CMT1).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Joseph, L.J. et al. Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with “zinc-binding finger” structure. Proc. Natl. Acad. Sci. USA 85, 7164–7168 (1988).

    Article  CAS  Google Scholar 

  2. Rangnekar, V.M., Aplin, A.C. & Sukhatme, V.P. The serum and TPA responsive promoter and intron-exon structure of EGR2, a human early growth response gene encoding a zinc finger protein. Nucleic Acids Res. 18, 2749–2757 (1990).

    Article  CAS  Google Scholar 

  3. Chavrier, P. et al. A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J. 7, 29–35 (1988).

    Article  CAS  Google Scholar 

  4. Chavrier, P. et al. Structure, chromosome location, and expression of the mouse zinc finger gene Krox-20: multiple gene products and coregulation with the proto-oncogene c-fos. Mol. Cell. Biol. 9, 787–797 (1989).

    Article  CAS  Google Scholar 

  5. Nardelli, J., Gibson, T.J., Vesque, C. & Charnay, P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349, 175–178 (1991).

    Article  CAS  Google Scholar 

  6. Vesque, C. & Charnay, P. Mapping functional regions of the segment-specific transcription factor Krox-20. Nucleic Acids Res. 20, 2485–2492 (1992).

    Article  CAS  Google Scholar 

  7. Zorick, T.S., Syroid, D.E., Arroyo, E., Scherer, S.S. & Lemke, G. The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol. Cell. Neurosci. 8, 129–145 (1996).

    Article  CAS  Google Scholar 

  8. Swiatek, P.J. & Gridley, T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071–2084 (1993).

    Article  CAS  Google Scholar 

  9. Schneider-Maunoury, S. et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214 (1993).

    Article  CAS  Google Scholar 

  10. Topilko, P. et al. Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799 (1994).

    Article  CAS  Google Scholar 

  11. Chance, P.F. et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–151 (1993).

    Article  CAS  Google Scholar 

  12. Lupski, J.R., Chance, P.F. & Garcia, C.A. Inherited primary peripheral neuropathies: molecular genetics and clinical implications of CMT1A and HNPP. J.A.M.A. 270, 2326–2330 (1993).

    Article  CAS  Google Scholar 

  13. Dyck, P.J., Chance, P., Lebo, R. & Carney, J.A. in Peripheral Neuropathy (eds Dyck, P.J., Thomas, P.K., Griffin, J.W., Low, P.A. & Poduslo, J.F.) 1094–1136 (W. B. SaundersCo., Philadelphia, 1993).

  14. Harati, Y. & Butler, I.J. Congenital hypomyelinating neuropathy. J. Neurol. Neurosurg. Psychiatry 48, 1269–1276 (1985).

    Article  CAS  Google Scholar 

  15. De Jonghe, P., Timmerman, V., Nelis, E., Martin, J.J. & Van Broeckhoven, C. Charcot-Marie-Tooth disease and related peripheral neuropathies. J. Periph. Nerv. Syst. 2, 370–387 (1997).

    CAS  Google Scholar 

  16. Lupski, J.R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66, 219–232 (1991).

    Article  CAS  Google Scholar 

  17. Raeymaekers, P. et al. Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT1a). Neuromuscul. Disord. 1, 93–97 (1991).

    Article  CAS  Google Scholar 

  18. Warner, L.E. et al. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 17, 451–460 (1996).

    Article  CAS  Google Scholar 

  19. Russo, M.W., Sevetson, B.R. & Milbrandt, J. Identification of NAB1, a represser of NGFI-A- and Krox20-mediated transcription. Proc. Natl. Acad. Sci. USA 92, 6873–6877(1995).

    Article  CAS  Google Scholar 

  20. Svaren, J. et al. NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol. Cell. Biol. 16, 3545–3553 (1996).

    Article  CAS  Google Scholar 

  21. Russo, M.W., Matheny, C. & Milbrandt, J. Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor. Mol. Cell. Biol. 13, 6858–6865 (1993).

    Article  CAS  Google Scholar 

  22. Lupski, J.R. Charcot-Marie-Tooth disease: A gene-dosage effect. Hosp. Pract. 32, 83–122 (1997).

    Article  CAS  Google Scholar 

  23. Swirnoff, A.H. & Milbrandt, J. DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol. Cell. Biol. 15, 2275–2287 (1995).

    Article  CAS  Google Scholar 

  24. Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. & Wright, P.E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 635–637 (1989).

    Article  CAS  Google Scholar 

  25. Brown, R.S. & Argos, P. Fingers and helices. Nature 324, 215 (1986).

    Article  CAS  Google Scholar 

  26. Berg, J.M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc. Natl. Acad. Sci. USA 85, 99–102 (1988).

    Article  CAS  Google Scholar 

  27. Gibson, T.J., Postma, J.P.M., Brown, R.S. & Argos, P. A model for the tertiary structure of the 28 residue DNA-binding motif (‘zinc finger’) common to many eukaryotic transcriptional regulatory proteins.Protein Eng. 2, 209–218 (1988).

    Article  CAS  Google Scholar 

  28. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  29. Wilson, T.E. et al. In vivo mutational analysis of the NGFI-A zinc fingers. J. Biol. Chem. 267, 3718–3724 (1992).

    CAS  PubMed  Google Scholar 

  30. Roa, B.B. et al. Charcot-Marie-Tooth disease type 1A: association with a spontaneous point mutation in the PMP22 gene. New Engl. J. Med. 329, 96–101 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lupski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, L., Mancias, P., Butler, I. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 18, 382–384 (1998). https://doi.org/10.1038/ng0498-382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing