Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A full genome search in multiple sclerosis

Abstract

The aetiology of multiple sclerosis (MS) is uncertain. There is strong circumstantial evidence to indicate it is an autoimmune complex trait1–3. Risks for first degree relatives are increased some 20 fold over the general population4. Twin studies have shown monozygotic concordance rates of 25–30% compared to 4% for dizygotic twins and siblings5,6. Studies of adoptees and half sibs show that familial risk is determined by genes, but environmental factors strongly influence observed geographic differences3,7–9. Studies of candidate genes have been largely unrewarding10–12. We report a genome search using 257 microsatellite markers with average spacing of 15.2 cM in 100 sibling pairs (Table 1, data set 1 – DS1). A locus of λ>3 was excluded from 88% of the genome. Five loci with maximum lod scores (MLS) of > 1 were identified on chromosomes 2, 3, 5, 11 and X. Two additional data sets containing 44 (Table 1, DS2) and 78 sib pairs (Table 1, DS3) respectively, were used to further evaluate the HLA region on 6p21 and a locus on chromosome 5 with an MLS of 4.24. Markers within 6p21 gave MLS of 0.65 (nonsignificant, NS). However, D6S461, just outside the HLA region, showed significant evidence for linkage disequilibrium by the transmission disequilibrium test (TDT), in all three data sets (for DS1 λ2=10.8, adjusted P<0.01)(DS2 and DS3 λ2 = 10.9, P < 0.0005), suggesting a modest susceptibility locus in this region. On chromosome 5p results from all three data sets (222 sib pairs) yielded a multipoint MLS of 1.6. The results support genetic epidemiological evidence that several genes interact epistatically to determine heritable susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ebers, G.C. & Sadovnick, A.D., Role of Genetic Factors in Multiple Sclerosis Susceptibility. J. Neuroimmunol. 54, 1–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Sadovnick, A.D. & Ebers, G.C. Epidemiology of MS: A critical overview. Can. J. Neurol. Sci. 20, 17–29 (1993).

    Article  CAS  Google Scholar 

  3. Ebers, G.C., Sadovnick, A.D. & Risch, N.J. A genetic basis for familial aggregation in multiple sclerosis. Nature 377, 150–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sadovnick, A.D., Baird, P.A. & Ward, R.H., Updated risks for relatives. Am. J. Med. Genet. 29, 533–541 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Ebers, G.C. et al. A population- based twin study in multiple sclerosis. New Engl. J. Med. 315, 1638–1642 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Mumford, C.J. et al. The British Isles survey of multiple sclerosis in twins. Neurology 44, 11–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Sadovnick, A.D., Ebers, G.C., Dyment, D., Risch, N. & the Canadian Collaborative Study Group. Evidence for the genetic basis of multiple sclerosis. Lancet (in the press).

  8. Hammond, S.R. et al. The epidemiology of multiple sclerosis in three Australian cities, Perth, Newcastle and Hobart. Brain 111, 1–25 (1988).

    Article  PubMed  Google Scholar 

  9. Sadovnick, A.D., Ebers, G.C., Risch, N.J. & the Canadian Collaborative Study Group. Sibling Risks for Multiple Sclerosis. Neurology 46, A335 (1996).

    Article  Google Scholar 

  10. Ebers, G.C., Paty, D.W., Stiller, C., Nelson, R. & Seland, T. HLA Typing in MS Sibling Pairs.Lancet 88-90 (1982).

  11. Kellar-Wood, H.F. et al. Multiple sclerosis and the HLA-D region: linkage and association studies. J. Neuroimmunol. 58, 183–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet. 40, 1–14 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Risch, N. A note on multiple testing procedures in linkage analysis. Am. J. Hum. Genet. 48, 1058–1064 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Hillert, J. & Olerup, O., Sclerosis is associated with genes within or close to the HLA-DR-DQ subregion on a normal DR15, DQ6, Dw2 haplotype. Neurology 43, 163–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Tienari, R., Wikstrom, J., Sajantila, A., Palo, J. & Peltonen, L. Genetic susceptibility to multiple sclerosis linked to the myelin basic protein gene. Lancet 340, 987–991 (1993).

    Article  Google Scholar 

  17. Wood, N.W., Holmans, P., Clayton, D., Robertson, N. & Compston, D.A.S. No linkage or association between multiple sclerosis and the myelin basic protein gene in affected sibling pairs. J. Neurol.Neurosurg. Psychiat. 57, 1191–1194 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seboun, E., Robinson, M.A. & Doolittle, T.H. A susceptibility locus for multiple sclerosis is linked to the T-cell reception beta chain complex. Cell 57, 1095–1100 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Beall, S.S., Biddison, W.E., McFarlin, D.E., McFarland, H. & Hood, L.E. Susceptibility for multiple sclerosis is determined, in part, by inheritance of a 175-kb region of the TCR V beta locus and the HLA class II genes. J. Neuroimmunol. 45, 53–60 (1993).

    Article  CAS  Google Scholar 

  20. Hashimoto, L., Mak, T. & Ebers, G.C. T-cell alpha chain polymorphism in MS. J. Neuroimmunol. 40, 41–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Hillert, J., Chunmoal, L. & Olerup, O. No association with germline T cell receptor σ-chain gene alleles or haplotypes in Swedish patients with multiple sclerosis. J. Neuroimmunol. 31, 141–147 (1991).

    Article  Google Scholar 

  22. Walter, M., Gibson, W., Ebers, G.C. & Cox, D.W. Susceptibility to Multiple Sclerosis associated with the Proximal Heavy Chain Variable Region. J. Clin. Invest. 87, 1266–1273 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood, N. et al. Susceptibility to multiple sclerosis and the immunoglobulin heavy chain variable region. J. Neurol. 242, 677–682 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Walter, M.S., Gibson, W.T., Ebers, G.C. & Cox, D.W. Susceptibility to multiple sclerosis is associated with the proximal immunoglobulin heavy chain region. J. Clin. Invest. 87, 1266–1273 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashimoto, L., Walter, M., Cox, D. & Ebers, G.C. Immunoglobulin heavy chain variable region polymorphisms in multiple sclerosis susceptibility. J. Neuroimmunol. 44, 77–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Pericak-Vance, M.A. et al. Segregation with markers on chromosome 19q suggest a susceptibility locus for multiple sclerosis (MS). Am. J. Hum. Genef. 55, A199 (1994).

    Google Scholar 

  27. Buetow, K.H. et al. Integrated human genome-wide maps constructed using the CEPH reference panel. Nature Genet. 6, 391–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. NIH/CEPH Collaborative Mapping Group.A Comprehensive Genetic Linkage Map of the Human Genome. Science 258, 67–86 (1992).

  29. Risch, N. Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am. J. Hum. Genet. 46, 242–253 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Risch, N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am. J. Hum. Genet. 46, 229–241 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Risch, N. Exclusion mapping for complex disease. Am. J. Hum. Genet. 53, 185 (1993).

    Google Scholar 

  32. Terwilliger, J.D. & Ott, J. A novel polylocus method for linkage analysis using the lod-score or affected sib-pair method.Genef. Epidemiol. 10, 477–482(1993).

    Article  CAS  PubMed  Google Scholar 

  33. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebers, G., Kukay, K., Bulman, D. et al. A full genome search in multiple sclerosis. Nat Genet 13, 472–476 (1996). https://doi.org/10.1038/ng0896-472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0896-472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing