Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changing perspectives regarding late-life dementia

Abstract

Individuals over 80 years of age represent the most rapidly growing segment of the population, and late-life dementia has become a major public health concern worldwide. Development of effective preventive and treatment strategies for late-life dementia relies on a deep understanding of all the processes involved. In the centuries since the Greek philosopher Pythagoras described the inevitable loss of higher cognitive functions with advanced age, various theories regarding the potential culprits have dominated the field, ranging from demonic possession, through 'hardening of blood vessels', to Alzheimer disease (AD). Recent studies suggest that atrophy in the cortex and hippocampus—now considered to be the best determinant of cognitive decline with aging—results from a combination of AD pathology, inflammation, Lewy bodies, and vascular lesions. A specific constellation of genetic and environmental factors (including apolipoprotein E genotype, obesity, diabetes, hypertension, head trauma, systemic illnesses, and obstructive sleep apnea) contributes to late-life brain atrophy and dementia in each individual. Only a small percentage of people beyond the age of 80 years have 'pure AD' or 'pure vascular dementia'. These concepts, formulated as the dynamic polygon hypothesis, have major implications for clinical trials, as any given drug might not be ideal for all elderly people with dementia.

Key Points

  • Over the past 27 centuries, the perception of cognitive impairment with aging has changed from a normal inevitable part of aging to being mostly attributable to Alzheimer disease (AD)

  • Alois Alzheimer was one of the first clinician–scientists to describe the importance of vascular pathology and to de-emphasize the role of amyloid plaques in brain atrophy and late-life dementia

  • Clinicopathological studies have consistently shown that individuals over 80 years of age generally have 'mixed' pathologies (infarcts, plaques, tangles, Lewy bodies and inflammation) rather than 'pure AD'

  • The size of the cortex and hippocampus—more than AD or any other single pathological finding—correlates with the degrees of cognitive decline and dementia in elderly individuals

  • Appreciating the link between midlife risk factors and late-life size of the cortex and hippocampus has serious implications for disease diagnosis, patient management, and interpretation of research findings

  • The dynamic polygon hypothesis provides a new framework for thinking about aging and dementia that departs from the linear model proposed by the amyloid cascade hypothesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High density of blood vessels in the brain.
Figure 2: Factors that could cause brain atrophy and cognitive impairment.
Figure 3: Models to account for late-life cognitive impairment.

Similar content being viewed by others

References

  1. Berchtold, N. C. & Cotman, C. W. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol. Aging 19, 173–189 (1998).

    CAS  PubMed  Google Scholar 

  2. Mast, H., Tatemichi, T. K. & Mohr, J. P. Chronic brain ischemia: the contributions of Otto Binswanger and Alois Alzheimer to the mechanisms of vascular dementia. J. Neurol. Sci. 132, 4–10 (1995).

    CAS  PubMed  Google Scholar 

  3. Alzheimer, A. On peculiar cases of disease at higher age [German]. Neurologie und Psychiatrie 4, 256–286 (1911).

    Google Scholar 

  4. Ballenger, J. F. Progress in the history of Alzheimer's disease: the importance of context. J. Alzheimers Dis. 9, 5–13 (2006).

    CAS  PubMed  Google Scholar 

  5. Wilson, D. C. The pathology of senility. Am. J. Psychiatry 111, 902–906 (1955).

    CAS  PubMed  Google Scholar 

  6. Hachinski, V. C., Lassen, N. A. & Marshall, J. Multi-infarct dementia. A cause of mental deterioration in the elderly. Lancet 2, 207–210 (1974).

    CAS  PubMed  Google Scholar 

  7. Blessed, G., Tomlinson, B. E. & Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 114, 797–811 (1968).

    CAS  PubMed  Google Scholar 

  8. Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    CAS  PubMed  Google Scholar 

  9. Cummings, J. L. Alzheimer's disease. N. Engl. J. Med. 351, 56–67 (2004).

    CAS  PubMed  Google Scholar 

  10. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  11. McKhann, G. et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34, 939–944 (1984).

    CAS  PubMed  Google Scholar 

  12. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn (American Psychiatric Association, Washington, D. C., 1994).

  13. Khachaturian, Z. S. Diagnosis of Alzheimer's disease. Arch. Neurol. 42, 1097–1105 (1985).

    CAS  PubMed  Google Scholar 

  14. Mirra, S. S. et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41, 479–486 (1991).

    CAS  PubMed  Google Scholar 

  15. Jellinger, K. A. Criteria for the neuropathological diagnosis of dementing disorders: routes out of the swamp? Acta Neuropathol. 117, 101–110 (2009).

    PubMed  Google Scholar 

  16. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  17. [No authors listed] Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. Neurobiol. Aging 18 (4 Suppl.), S1–S2 (1997).

  18. McKeith, I. G. Dementia with Lewy bodies. Br. J. Psychiatry 180, 144–147 (2002).

    PubMed  Google Scholar 

  19. McKeith, I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology 47, 1113–1124 (1996).

    CAS  PubMed  Google Scholar 

  20. Hachinski, V. et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37, 2220–2241 (2006).

    PubMed  Google Scholar 

  21. Relkin, N., Marmarou, A., Klinge, P., Bergsneider, M. & Black, P. M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57 (3 Suppl.), S4–S16 (2005).

    PubMed  Google Scholar 

  22. Yoshimura, M. et al. Dementia in cerebral amyloid angiopathy: a clinicopathological study. J. Neurol. 239, 441–450 (1992).

    CAS  PubMed  Google Scholar 

  23. Nagy, Z. et al. The effects of additional pathology on the cognitive deficit in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 165–170 (1997).

    CAS  PubMed  Google Scholar 

  24. Erkinjuntti, T., Ostbye, T., Steenhuis, R. & Hachinski, V. The effect of different diagnostic criteria on the prevalence of dementia. N. Engl. J. Med. 337, 1667–1674 (1997).

    CAS  PubMed  Google Scholar 

  25. Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).

    CAS  PubMed  Google Scholar 

  26. Petersen, R. C. & Negash, S. Mild cognitive impairment: an overview. CNS Spectr. 13, 45–53 (2008).

    PubMed  Google Scholar 

  27. Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).

    CAS  PubMed  Google Scholar 

  28. Viswanathan, A., Rocca, W. A. & Tzourio, C. Vascular risk factors and dementia: how to move forward? Neurology 72, 368–374 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

  30. Fotuhi, M. Preserving memory: tips to help baby boomers stay in the game. Practical Neurology March/April, 34–40 (2009).

    Google Scholar 

  31. Troncoso, J. C. et al. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann. Neurol. 64, 168–176 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Kivipelto, M. et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 62, 1556–1560 (2005).

    PubMed  Google Scholar 

  33. Kivipelto, M. et al. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 5, 735–741 (2006).

    PubMed  Google Scholar 

  34. Aguero-Torres, H., Kivipelto, M. & von Strauss, E. Rethinking the dementia diagnoses in a population-based study: what is Alzheimer's disease and what is vascular dementia? A study from the Kungsholmen project. Dement. Geriatr. Cogn. Disord. 22, 244–249 (2006).

    PubMed  Google Scholar 

  35. Prohovnik, I. et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology 66, 49–55 (2006).

    CAS  PubMed  Google Scholar 

  36. White, L. et al. Recent clinical–pathologic research on the causes of dementia in late life: update from the Honolulu–Asia Aging Study. J. Geriatr. Psychiatry Neurol. 18, 224–227 (2005).

    PubMed  Google Scholar 

  37. Schmitt, F. A. et al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 55, 370–376 (2000).

    CAS  PubMed  Google Scholar 

  38. Crystal, H. A. et al. The relative frequency of “dementia of unknown etiology” increases with age and is nearly 50% in nonagenarians. Arch. Neurol. 57, 713–719 (2000).

    CAS  PubMed  Google Scholar 

  39. Nelson, P. T., Braak, H. & Markesbery, W. R. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J. Neuropathol. Exp. Neurol. 68, 1–14 (2009).

    CAS  PubMed  Google Scholar 

  40. Korczyn, A. D. The amyloid cascade hypothesis. Alzheimers Dement. 4, 176–178 (2008).

    CAS  PubMed  Google Scholar 

  41. Schneider, J. A., Arvanitakis, Z., Bang, W. & Bennett, D. A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69, 2197–2204 (2007).

    PubMed  Google Scholar 

  42. Savva, G. M. et al. Age, neuropathology, and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    CAS  PubMed  Google Scholar 

  43. White, L. Brain lesions at autopsy in older Japanese-American men as related to cognitive impairment and dementia in final years of life: a summary report from the Honolulu–Asia Aging Study. J. Alzheimers Dis. doi:10.3233/JAD-2009-1178.

    PubMed  Google Scholar 

  44. Schneider, J. A., Arvanitakis, Z., Leurgans, S. E. & Bennett, D. A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66, 200–208 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Sonnen, J. A. et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 62, 406–413 (2007).

    PubMed  Google Scholar 

  46. Haroutunian, V. et al. Role of the neuropathology of Alzheimer disease in dementia in the oldest-old. Arch. Neurol. 65, 1211–1217 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Erten-Lyons, D. et al. Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology 72, 354–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jagust, W. J. et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann. Neurol. 63, 72–80 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Helzner, E. P. et al. Contribution of vascular risk factors to the progression in Alzheimer disease. Arch. Neurol. 66, 343–348 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Korf, E. S., White, L. R., Scheltens, P. & Launer, L. J. Midlife blood pressure and the risk of hippocampal atrophy: the Honolulu Asia Aging Study. Hypertension 44, 29–34 (2004).

    CAS  PubMed  Google Scholar 

  51. Du, A. T. et al. Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiol. Aging 27, 733–740 (2006).

    PubMed  Google Scholar 

  52. Sapolsky, R. M. Chickens, eggs and hippocampal atrophy. Nat. Neurosci. 5, 1111–1113 (2002).

    CAS  PubMed  Google Scholar 

  53. Sapolsky, R. M. Depression, antidepressants, and the shrinking hippocampus. Proc. Natl Acad. Sci. USA 98, 12320–12322 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Knecht, S. et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur. Heart J. 29, 2125–2132 (2008).

    PubMed  Google Scholar 

  55. den Heijer, T. et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46, 1604–1610 (2003).

    CAS  PubMed  Google Scholar 

  56. Appenzeller, S., Carnevalle, A. D., Li, L. M., Costallat, L. T. & Cendes, F. Hippocampal atrophy in systemic lupus erythematosus. Ann. Rheum. Dis. 65, 1585–1589 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tate, D. F. & Bigler, E. D. Fornix and hippocampal atrophy in traumatic brain injury. Learn. Mem. 7, 442–446 (2000).

    CAS  PubMed  Google Scholar 

  58. Biessels, G. J., De Leeuw, F. E., Lindeboom, J., Barkhof, F. & Scheltens, P. Increased cortical atrophy in patients with Alzheimer's disease and type 2 diabetes mellitus. J. Neurol. Neurosurg. Psychiatry 77, 304–307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sheline, Y. I., Gado, M. H. & Kraemer, H. C. Untreated depression and hippocampal volume loss. Am. J. Psychiatry 160, 1516–1518 (2003).

    PubMed  Google Scholar 

  60. Barnes, D. E. et al. Predicting risk of dementia in older adults. The late-life dementia risk index. Neurology 73, 173–179 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jefferson, A. L. et al. Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. J. Am. Geriatr. Soc. 55, 1044–1048 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Kril, J. J., Patel, S., Harding, A. J. & Halliday, G. M. Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. J. Neurol. Neurosurg. Psychiatry 72, 747–751 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gustafson, D. Adiposity indices and dementia. Lancet Neurol. 5, 713–720 (2006).

    PubMed  Google Scholar 

  64. Wiseman, R. M. et al. Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. Neurology 63, 1892–1897 (2004).

    CAS  PubMed  Google Scholar 

  65. Minoguchi, K. et al. Silent brain infarction and platelet activation in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 175, 612–617 (2007).

    PubMed  Google Scholar 

  66. Macey, P. M. et al. Brain morphology associated with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 166, 1382–1387 (2002).

    PubMed  Google Scholar 

  67. Whitmer, R. A. et al. Central obesity and increased risk of dementia more than three decades later. Neurology 71, 1057–1064 (2008).

    CAS  PubMed  Google Scholar 

  68. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    CAS  PubMed  Google Scholar 

  69. LeRoith, D. Insulin-like growth factors and the brain. Endocrinology 149, 5951 (2008).

    CAS  PubMed  Google Scholar 

  70. Neumann, K. F. et al. Insulin resistance and Alzheimer's disease: molecular links & clinical implications. Curr. Alzheimer Res. 5, 438–447 (2008).

    CAS  PubMed  Google Scholar 

  71. Yaffe, K. et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 292, 2237–2242 (2004).

    CAS  PubMed  Google Scholar 

  72. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    CAS  PubMed  Google Scholar 

  73. Tiraboschi, P. et al. Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62, 1977–1983 (2004).

    CAS  PubMed  Google Scholar 

  74. Drzezga, A. et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72, 1487–1494 (2009).

    CAS  PubMed  Google Scholar 

  75. Cheng, D. et al. Functional interaction between APOE4 and LDL receptor isoforms in Alzheimer's disease. J. Med. Genet. 42, 129–131 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Berlau, D. J., Corrada, M. M., Head, E. & Kawas, C. H. APOE ε2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology 72, 829–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cotman, C. W., Berchtold, N. C. & Christie, L. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    CAS  PubMed  Google Scholar 

  78. Helzner, E. P., Scarmeas, N., Cosentino, S., Portet, F. & Stern, Y. Leisure activity and cognitive decline in incident Alzheimer disease. Arch. Neurol. 64, 1749–1754 (2007).

    PubMed  Google Scholar 

  79. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56 (1996).

    CAS  PubMed  Google Scholar 

  80. Adlard, P. A., Perreau, V. M., Pop, V. & Cotman, C. W. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 4217–4221 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Erickson, K. I. et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–283 (2007).

    PubMed  Google Scholar 

  82. Colcombe, S. J. et al. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1166–1170 (2006).

    PubMed  Google Scholar 

  83. Draganski, B. et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Drachman, D. A. Aging of the brain, entropy, and Alzheimer disease. Neurology 67, 1340–1352 (2006).

    CAS  PubMed  Google Scholar 

  85. Drachman, D. A. Nature or nurture: education and the trajectory of declining brain function with age and Alzheimer disease. Neurology 70, 1725–1727 (2008).

    PubMed  Google Scholar 

  86. McGurn, B., Deary, I. J. & Starr, J. M. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology 71, 1051–1056 (2008).

    PubMed  Google Scholar 

  87. Ambrée, O. et al. Reduction of amyloid angiopathy and Aβ plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am. J. Pathol. 169, 544–552 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Hartman, R. E. et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease. Neurobiol. Dis. 24, 506–515 (2006).

    CAS  PubMed  Google Scholar 

  89. Fotuhi, M., Mohassel, P. & Yaffe, K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat. Clin. Pract. Neurol. 5, 140–152 (2009).

    CAS  PubMed  Google Scholar 

  90. Yang, L. et al. Inhibition of the expression of prostate specific antigen by curcumin [Chinese]. Yao Xue Xue Bao 40, 800–803 (2005).

    CAS  PubMed  Google Scholar 

  91. Chan, A. & Shea, T. B. Dietary supplementation with apple juice decreases endogenous amyloid-β levels in murine brain. J. Alzheimers Dis. 16, 167–171 (2009).

    CAS  PubMed  Google Scholar 

  92. Kivipelto, M. & Solomon, A. Preventive neurology: on the way from knowledge to action. Neurology 73, 168–169 (2009).

    PubMed  Google Scholar 

  93. Aizenstein, H. J. et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 65, 1509–1517 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Mathis, C. A. Amyloid imaging fundings from multicenter studies. Alzheimers Dement. 5, IC-S1-01 (2009).

  95. van der Flier, W. M. & Scheltens, P. Alzheimer disease: hippocampal volume loss and Alzheimer disease progression. Nat. Rev. Neurol. 5, 361–362 (2009).

    PubMed  Google Scholar 

  96. Driscoll, I. et al. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72, 1906–1913 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Salmond, C. H. et al. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage 29, 117–124 (2006).

    CAS  PubMed  Google Scholar 

  98. Cummings, J. L., Doody, R. & Clark, C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 69, 1622–1634 (2007).

    PubMed  Google Scholar 

  99. Salloway, S. & Correia, S. Alzheimer disease: time to improve its diagnosis and treatment. Cleve. Clin. J. Med. 76, 49–58 (2009).

    PubMed  Google Scholar 

  100. Fillit, H., Hess, G., Hill, J., Bonnet, P. & Toso, C. IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 73, 180–185 (2009).

    CAS  PubMed  Google Scholar 

  101. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    CAS  PubMed  Google Scholar 

  102. Hardy, J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J. Neurochem. 110, 1129–1134 (2009).

    CAS  PubMed  Google Scholar 

  103. Jack, C. R. Jr, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 132, 1355–1365 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 60, 1495–1500 (2003).

    CAS  PubMed  Google Scholar 

  105. Jagust, W. Will neuroimaging help us understand Alzheimer's disease? Alzheimer's & Dementia 5, IC-PL-01 (2009).

    Google Scholar 

  106. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, H. G. et al. Amyloid-β in Alzheimer disease: the null versus the alternate hypotheses. J. Pharmacol. Exp. Ther. 321, 823–829 (2007).

    CAS  PubMed  Google Scholar 

  108. Seabrook, G. R., Ray, W. J., Shearman, M. & Hutton, M. Beyond amyloid: the next generation of Alzheimer's disease therapeutics. Mol. Interv. 7, 261–270 (2007).

    CAS  PubMed  Google Scholar 

  109. Abbott, A. Neuroscience: the plaque plan. Nature 456, 161–164 (2008).

    CAS  PubMed  Google Scholar 

  110. Small, S. A. & Duff, K. Linking Aβ and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 60, 534–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Williams, M. Progress in Alzheimer's disease drug discovery: an update. Curr. Opin. Investig. Drugs 10, 23–34 (2009).

    CAS  PubMed  Google Scholar 

  112. Fotuhi, M. et al. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study. Alzheimers Dement. 4, 223–227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Trachtenberg, D. I. & Trojanowski, J. Q. Dementia: a word to be forgotten. Arch. Neurol. 65, 593–595 (2008).

    PubMed  Google Scholar 

  114. Hachinski, V. World Stroke Day 2008: “little strokes, big trouble”. Stroke 39, 2407–2420 (2008).

    PubMed  Google Scholar 

  115. Hachinski, V. Shifts in thinking about dementia. JAMA 300, 2172–2173 (2008).

    CAS  PubMed  Google Scholar 

  116. Knopman, D. S. Go to the head of the class to avoid vascular dementia and skip diabetes and obesity. Neurology 71, 1046–1047 (2008).

    PubMed  Google Scholar 

  117. Kivipelto, M. & Solomon, A. Cholesterol as a risk factor for Alzheimer's disease—epidemiological evidence. Acta Neurol. Scand. Suppl. 185, 50–57 (2006).

    CAS  PubMed  Google Scholar 

  118. Kivipelto, M., Solomon, A., Blennow, K., Olsson, A. G. & Winblad, B. The new cholesterol controversy—a little bit of history repeating? Acta Neurol. Scand. Suppl. 185, 1–2 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V. Hachinski is funded by the Alzheimer Association, Award Number IIRG-08-91792. P. J. Whitehouse received support from the National Institute on Aging, Shigeo and Megumi Takayama, and the Greenwall Foundation. Barbara Crain, Miia Kivipelto and Michael Williams made significant suggestions, and we very much appreciate their critical and thoughtful comments. We thank Tzipora Sofare, Medical Editor at the Sandra and Malcolm Berman Brain & Spine Institute, for her help with the preparation of the tables and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Fotuhi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Studies reflecting the heterogeneity of neuropathological findings in elderly people over the age of 80 years, with or without dementia. (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotuhi, M., Hachinski, V. & Whitehouse, P. Changing perspectives regarding late-life dementia. Nat Rev Neurol 5, 649–658 (2009). https://doi.org/10.1038/nrneurol.2009.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing