Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans

Abstract

Retrovirus-mediated gene therapy is a particularly attractive approach for glioblastoma multiforme (GBM), given the poor prognosis of this tumour and its localized proliferation in post-mitotic tissue. In this study we assessed, for the first time in humans, the therapeutic potential of a newly designed bicistronic Moloney vector (pLIL-2-TK), combining the expression of a suicide gene (thymidine kinase, tk) with an immunomodulatory gene (human interleukin 2, IL-2). Evidence of transgene activity in the treated tumours is presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Oldfield EH et al. Clinical protocol: gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir Hum Gene Ther 1993 4: 39–69

    Article  CAS  PubMed  Google Scholar 

  2. Elshami AA et al. Gap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro Gene Therapy 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  3. Hamel W et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2701

    CAS  PubMed  Google Scholar 

  4. Long Z et al. Biosafety monitoring of patients receiving intracerebral injections of murine retroviral vector producer cells Hum Gene Ther 1998 9: 1165–1172

    Article  CAS  PubMed  Google Scholar 

  5. Karnofsky DA, Burchenal JH . The clinical evaluation of chemotherapeutic agents in cancer. In: McLeod CM (ed) . Evaluation of Chemotherapeutic Agents Columbia University Press: New York 1945 191–205

    Google Scholar 

  6. Chilosi M et al. Multimarker immunohistochemical staining of calgranulins, chloroacetate esterase, and S100 for simultaneous demonstration of inflammatory cells on paraffin sections J Histochem Cytochem 1990 38: 1669–1675

    Article  CAS  PubMed  Google Scholar 

  7. Vile RG et al. Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression Int J Cancer 1997 71: 267–274

    Article  CAS  PubMed  Google Scholar 

  8. Pizzato M et al. Production and characterization of a bicistronic Moloney-based retroviral vector expressing human interleukin 2 and herpes simplex virus thymidine kinase for gene therapy of cancer Gene Therapy 1998 5: 1003–1007

    Article  CAS  PubMed  Google Scholar 

  9. Barba D et al. Intratumoral LAK cell and interleukin 2 therapy of human gliomas J Neurosurg 1989 70: 175–182

    Article  CAS  PubMed  Google Scholar 

  10. O’Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth Cell 1997 88: 277–285

    Article  PubMed  Google Scholar 

  11. Bi WL et al. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSVtk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  12. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  13. Tjuvajev J et al. RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma Cancer Res 1995 55: 1902–1910

    CAS  PubMed  Google Scholar 

  14. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  15. Hamel W, Magnelli L, Chiarugi VP, Isreal MA . Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  16. Freeman SM et al. The role of cytokines in mediating the bystander effect using HSV-tk xenogeneic cells Cancer Lett 1995 92: 167–174

    Article  CAS  PubMed  Google Scholar 

  17. Gagandeep S et al. Prodrug-activated gene therapy: involvement of an immunological component in the ‘bystander effect’ Cancer Gene Ther 1996 3: 83–88

    CAS  PubMed  Google Scholar 

  18. Yamamoto S et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice Cancer Gene Ther 1997 4: 91–96

    PubMed  Google Scholar 

  19. Meazza R et al. Analysis of IL-2 receptor expression and of the biological effects of IL-2 gene transfection in small-cell lung cancer Br J Cancer 1996 74: 788–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riddell SR et al. T-cell mediated rejection of gene-modifiedHIV-specific cytotoxic T lymphocytes in HIV-infected patients Nature Med 1996 2: 216–223

    Article  CAS  PubMed  Google Scholar 

  21. Colombo MP, Forni G . Immunotherapy I: cyclosine gene transfer strategies Cancer Metastasis Rev 1996 15: 317–328

    Article  CAS  PubMed  Google Scholar 

  22. Corrias MV et al. Characterization and tumorigenicity of human neuroblastoma cells transfected with the IL-2 gene Cancer Gene Ther 1998 5: 38–44

    CAS  PubMed  Google Scholar 

  23. Cosset FL et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum J Virol 1995 69: 7430–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ram Z et al. Summary of results and conclusions of the gene therapy of malignant brain tumors: clinical study J Neurosurg 1995 82: 343A

    Google Scholar 

  25. Rho HM et al. Characterization of the reverse transcriptase from a new retrovirus (HTLV) produced by a human cutaneous T-cell lymphoma cell line Virology 1981 112: 355–360

    Article  CAS  PubMed  Google Scholar 

  26. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  27. Schaeren-Wiemers N, Gerfin-Moser A . A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes Histochemistry 1993 100: 431–440

    Article  CAS  PubMed  Google Scholar 

  28. Chilosi M et al. p21/WAF1 cyclin-kinase inhibitor expression in non-Hodgkin’s lymphomas: a potential marker of p53 tumor-suppressor gene function Blood 1996 88: 4012–4020

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palù, G., Cavaggioni, A., Calvi, P. et al. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther 6, 330–337 (1999). https://doi.org/10.1038/sj.gt.3300805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300805

Keywords

This article is cited by

Search

Quick links