Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models

Abstract

Replication-conditional herpes simplex virus (HSV)-based vectors have great potential in the treatment of various types of cancers including brain tumors. HSV mutants lacking the UL39 gene and both copies of the γ134.5 gene (e.g. MGH1, G207) have been demonstrated to possess oncolytic effects as well as potent anticancer vaccination effects without compromising safety. Such mutants thus provide optimal templates to produce novel oncolytic HSV vectors for cancer gene therapy applications. In order to accomplish quick and efficient construction of oncolytic HSV vectors, a novel BAC-based method designated as ‘HSVQuik system’ was developed. This system sequentially utilizes two different site-specific recombination systems to introduce virtually any transgene cassettes of interest into the deleted UL39 locus (Flp-FRT in Escherichia coli) and to release the vector genome sequence from the procaryotic plasmid backbone (Cre-loxP in Vero cells). Taking advantage of the HSVQuik system, we constructed three oncolytic HSV vectors that express mouse IL4, CD40 ligand and 6CK, respectively. In vivo therapeutic experiments using two luciferase-labeled syngeneic mouse brain tumor models revealed that expression of these immunomodulators significantly enhanced antitumor efficacy of oncolytic HSV. The HSVQuik system, together with luciferase-labeled tumor models, should expedite the process of generating and evaluating oncolytic HSV vectors for cancer gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ . Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 2001; 172: 27–36.

    Article  CAS  PubMed  Google Scholar 

  2. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  3. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  4. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    Article  PubMed  Google Scholar 

  5. Russell SJ . RNA viruses as virotherapy agents. Cancer Gene Ther 2002; 9: 961–966.

    Article  CAS  PubMed  Google Scholar 

  6. Zeh HJ, Bartlett DL . Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther 2002; 9: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  7. Varghese S, Rabkin SD . Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9: 967–978.

    Article  CAS  PubMed  Google Scholar 

  8. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  9. Kramm CM, Chase M, Herrlinger U, Jacobs A, Pechan PA, Rainov NG et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997; 8: 2057–2068.

    Article  CAS  PubMed  Google Scholar 

  10. Toda M, Rabkin SD, Kojima H, Martuza RL . Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 1999; 10: 385–393.

    Article  CAS  PubMed  Google Scholar 

  11. Todo T, Rabkin SD, Sundaresan P, Wu A, Meehan KR, Herscowitz HB et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10: 2741–2755.

    Article  CAS  PubMed  Google Scholar 

  12. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  13. Todo T, Feigenbaum F, Rabkin SD, Lakeman F, Newsome JT, Johnson PA et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2: 588–595.

    Article  CAS  PubMed  Google Scholar 

  14. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  15. Saeki Y, Fraefel C, Ichikawa T, Breakefield XO, Chiocca EA . Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  16. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y . An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  17. Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T . Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 2000; 26: 109–113.

    Article  CAS  PubMed  Google Scholar 

  18. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998; 9: 2787–2794.

    Article  CAS  PubMed  Google Scholar 

  19. Stavropoulos TA, Strathdee CA . An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72: 7137–7143.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Horsburgh BC, Hubinette MM, Qiang D, MacDonald MLE, Tufaro F . Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Therapy 1999; 6: 922–930.

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y . Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 2003; 77: 1382–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kambara H, Okano H, Chiocca EA, Saeki Y . An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 2005; 65: 2832–2839.

    Article  CAS  PubMed  Google Scholar 

  23. Tyminski E, Leroy S, Terada K, Finkelstein DM, Hyatt JL, Danks MK et al. Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res 2005; 65: 6850–6857.

    Article  CAS  PubMed  Google Scholar 

  24. Contag PR, Olomu IN, Stevenson DK, Contag CH . Bioluminescent indicators in living mammals. Nat Med 1998; 4: 245–247.

    Article  CAS  PubMed  Google Scholar 

  25. Bhaumik S, Gambhir SS . Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 2002; 99: 377–382.

    Article  CAS  PubMed  Google Scholar 

  26. Contag CH, Bachmann MH . Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002; 4: 235–260.

    Article  CAS  PubMed  Google Scholar 

  27. Doyle TC, Burns SM, Contag CH . In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 2004; 6: 303–317.

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa T, Hogemann D, Saeki Y, Tyminski E, Terada K, Weissleder R et al. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002; 4: 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 1996; 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  30. Yang XW, Model P, Heintz N . Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 1997; 15: 859–865.

    Article  CAS  PubMed  Google Scholar 

  31. Posfai G, Koob MD, Kirkpatrick HA, Blattner FR . Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 1997; 179: 4426–4428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stalker DM, Filutowicz M, Helinski DR . Release of initiation control by a mutational alteration in the R6K pi protein required for plasmid DNA replication. Proc Natl Acad Sci USA 1983; 80: 5500–5504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Connor M, Peifer M, Bender W . Construction of large DNA segments in Escherichia coli. Science 1989; 244: 1307–1312.

    Article  CAS  PubMed  Google Scholar 

  34. Li LP, Schlag PM, Blankenstein T . Transient expression of SV 40 large T antigen by Cre/LoxP-mediated site-specific deletion in primary human tumor cells. Hum Gene Ther 1997; 8: 1695–1700.

    Article  CAS  PubMed  Google Scholar 

  35. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R . In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 2003; 14: 1247–1254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Ralph Weissleder, Yasufumi Kaneda, Kazuo Oshima and Richard Wade-Martins for their collaborative insights. We gratefully acknowledge the generous gifts from Drs Nathaniel Heintz, Gyorgy Posfai, Michael O'Connor and Thomas Blankenstein. We also thank Ms Suzanne Camilli for editing the manuscript. This work was supported by NIH P01 CA69246 and P50 CA086355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Saeki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, K., Wakimoto, H., Tyminski, E. et al. Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Ther 13, 705–714 (2006). https://doi.org/10.1038/sj.gt.3302717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302717

Keywords

This article is cited by

Search

Quick links