Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The history of the angiogenic switch concept

Abstract

Spontaneously arising tumor cells are not usually angiogenic at first. The phenotypic switch to angiogenesis is usually accomplished by a substet that induces new capillaries that then converge toward the tumor. The switch clearly involves more than simple upregulation of angiogenic activity and is thought to be the result of a net balance of positive and negative regulators. Tumor growth is although to require disruption of this balance and hence this switch must turned on for cancer progression. Progenitor endothelial cells, the crosstalk between angiogenic factors and their receptors and the interaction between vasculogenesis and lymphangiogenesis are all factors that may contribute to the switch. Its promotion is also the outcome of genetic instability resulting in the emergence of tumor cell lines. This review describes the history of the angiogenic switch illustrated in the literature and with particular reference to the three transgenic mouse models, namely RIP1-TAG2, keratin-14 (K14) (human papilloma virus) HPV16 and papilloma virus, used for stage-specific assessment of the effects of antiangiogenic and antitumorigenic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ribatti D, Vacca A, Dammacco F . The role of vascular phase in solid tumor growth: a historical review. Neoplasia 1999; 1: 293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Folkman J . What is the role of endothelial cells in angiogenesis? Lab Invest 1984; 51: 601–604.

    CAS  PubMed  Google Scholar 

  3. Folkman J, Watson K, Ingber D, Hanahan D . Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.

    CAS  PubMed  Google Scholar 

  4. Nicosia RF, Tchao R, Leighton J . Interactions between newly formed endothelial channels and carcinoma cells in plasma clot cultures. Clin Exp Metastasis 1986; 4: 91–104.

    CAS  PubMed  Google Scholar 

  5. Modzelewski RA, Davies P, Watkins SC, Auerbach R, Chang MJ, Johnson CS . Isolation and identification of fresh tumor-derived endothelial cells from a murine RIF-1 fibrosarcoma. Cancer Res 1994; 54: 336–339.

    CAS  PubMed  Google Scholar 

  6. Butler TP, Gullino PM . Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975; 35: 512–516.

    CAS  PubMed  Google Scholar 

  7. Gimbrone Jr MA, Gullino PM . Neovascularization induced by intraocular xenografts of normal, preneoplastic, and neoplastic mouse mammary tissues. J Natl Cancer Inst 1976; 56: 306–318.

    Google Scholar 

  8. Gimbrone Jr MA, Gullino PM . Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res 1976; 36: 2611–2620.

    PubMed  Google Scholar 

  9. Brem SS, Gullino PM, Medina P . Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 1997; 195: 880–882.

    Google Scholar 

  10. Brem SS, Jensen HM, Gullino PM . Angiogenesis as a marker of preneoplastic lesions of human breast. Cancer 1978; 41: 239–244.

    CAS  PubMed  Google Scholar 

  11. Weidner N, Sample J, Welch W, Folkman J . Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. New Engl J Med 1991; 324: 1–8.

    CAS  PubMed  Google Scholar 

  12. Guidi AJ, Abu-Jawdeh G, Berse B, Jackman EW, Tognazzi K, Dvorak HF et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 1995; 87: 1237–1245.

    CAS  PubMed  Google Scholar 

  13. Takahashi T, Kalka C, Masuda D, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone-marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    CAS  PubMed  Google Scholar 

  14. Gill M, Dias K, Hattori ML, Rivera ML, Hicklin D, Witte L et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(-) endothelial precursor cells. Circ Res 2001; 88: 167–174.

    CAS  PubMed  Google Scholar 

  15. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al. VEGF contributes to postnatal neovascularization by mobilizing bone-marrow derived endothelial progenitor cells. EMBO J 1999; 18: 3964–3972.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2000; 193: 1005–1014.

    Google Scholar 

  17. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    CAS  PubMed  Google Scholar 

  18. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM . Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vajkoczy P, Blum S, Lamparter M, Mailhhammer R, Erber R, Engelhardt B et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 2003; 197: 1755–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL . VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 1998; 17: 303–311.

    CAS  PubMed  Google Scholar 

  21. Olofsson B, Jeltsch M, Eriksson U, Alitalo K . Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol 1999; 10: 528–535.

    CAS  PubMed  Google Scholar 

  22. Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 2000; 96: 3793–3800.

    CAS  PubMed  Google Scholar 

  23. Achen MG, Williams RA, Baldwin ME, Lai P, Roufail S, Alitalo K et al. The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 2002; 20: 99–107.

    CAS  PubMed  Google Scholar 

  24. Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000; 96: 546–553.

    CAS  PubMed  Google Scholar 

  25. Valtola R, Salven P, Heikkila P, Taipale J, Jonssuu H, Rehn M et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Partanen TA, Alitalo K, Miettinen M . Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999; 86: 2406–2412.

    CAS  PubMed  Google Scholar 

  27. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194: 797–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGFC/D receptor VEGFR-3. EMBO J 2001; 20: 4762–4773.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M . Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735–745.

    CAS  PubMed  Google Scholar 

  30. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor by secretion-trap expression cloning. Cell 1996; 87: 1161–1169.

    CAS  PubMed  Google Scholar 

  31. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie 2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.

    CAS  PubMed  Google Scholar 

  32. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al. Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.

    CAS  PubMed  Google Scholar 

  33. Tail CR, Jones PF . Angiopoietins in tumors: the angiogenic switch. J Pathol 2004; 204: 1–10.

    Google Scholar 

  34. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F . Postnatal vasculogenesis. Mech Dev 2001; 100: 157–163.

    CAS  PubMed  Google Scholar 

  35. Tang DG, Conti CJ . Endothelial cell development, vasculogenesis, angiogenesis and tumor neovascularization. Semin Thromb Hemost 2004; 30: 109–117.

    PubMed  Google Scholar 

  36. Clarijs R, Ruiter DJ, De Wall RM . Lymphangiogenesis in malignant tumours: does it occur? J Pathol 2001; 193: 143–146.

    CAS  PubMed  Google Scholar 

  37. Pepper MS . Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001; 7: 462–468.

    CAS  PubMed  Google Scholar 

  38. Stacker SA, Baldwin ME, Achen MG . The role of tumor lymphangiogenesis in metastatic spread. FASEB J 2002; 16: 922–934.

    CAS  PubMed  Google Scholar 

  39. Davidoff AM, NG CYC, Brown P, Leary MA, Spurbeck WW, Zhou J et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001; 7: 2870–2879.

    CAS  PubMed  Google Scholar 

  40. Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133–1140.

    CAS  PubMed  Google Scholar 

  41. Kim ES, Serur A, Huang J, Manley CA, Mc Crudden KW, Frisher JS et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 2002; 99: 11399–11404.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62: 4645–4655.

    CAS  PubMed  Google Scholar 

  43. Ke-Lin O, Qu-Hong H, Nagy JA, Eckelhoefer IA, Masse EM, Dvorak AM et al. Vascular targeting of solid ascites tumours with antibodies to vascular endothelial growth factor. Eur J Cancer 1996; 32A: 2467–2473.

    CAS  PubMed  Google Scholar 

  44. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993; 362: 841–844.

    CAS  PubMed  Google Scholar 

  45. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . Glioblastoma growth inhibited in vivo by a dominat-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    CAS  PubMed  Google Scholar 

  46. Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE . Selective inhibition of vascular endothelial growth factor (VEGF) receptor-2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000; 60: 5117–5124.

    CAS  PubMed  Google Scholar 

  47. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593–5499.

    CAS  PubMed  Google Scholar 

  48. Chen HX, Gore-Langton RE, Cheson BD . Clinical trials referral resource: current clinical trials of the anti-VEGF monoclonal antibody bevacizumab. Oncology 2001; 15: 1023–1026.

    Google Scholar 

  49. Huwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Google Scholar 

  50. Sun L, Tran N, Liang C, Hubbard S, Tang F, Lipson K et al. Identification of substituted 3-[(4, 5, 6, 7-tetrahydro-1H-indol-2yl)methylene]-1, 3-dihydroindol-2-ones as growth factor receptor inhibitors for VEGF-R2 (Flk-1/KDR), FGF-R1, and PDGF-Rbeta tyrosine kinases. J Med Chem 2000; 43: 2655–2663.

    CAS  PubMed  Google Scholar 

  51. Fan F, Wey JS, Mc Carthy MF, Belcheva A, Liu W, Bauer TW et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 2005; 24: 2647–2653.

    CAS  PubMed  Google Scholar 

  52. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.

    CAS  PubMed  Google Scholar 

  53. Karbanen T, Alitalo K . Lymphatic vessels as targets of tumor therapy? J Exp Med 2001; 194: F37–F42.

    Google Scholar 

  54. He Y, Kozaki K, Karpanen T, Koshikawara K, Yla-Herttuala S, Takahashi T et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94: 819–825.

    CAS  PubMed  Google Scholar 

  55. Boucher Y, Baxter LT, Jain RK . Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990; 50: 4478–4484.

    CAS  PubMed  Google Scholar 

  56. Kirsch M, Schackert G, Black PM . Metastasis and angiogenesis. Cancer Treat Res 2004; 117: 285–304.

    CAS  PubMed  Google Scholar 

  57. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    CAS  PubMed  Google Scholar 

  58. Bouck N, Stellmach V, Hsu S . How tumors become angiogenic. Adv Cancer Res 1996; 69: 135–174.

    CAS  PubMed  Google Scholar 

  59. Kandel J, Bossy-Wetzel E, Radvany F, Kagsbrun M, Folkman J, Hanahan D . Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–1104.

    CAS  PubMed  Google Scholar 

  60. Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z . Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 1990; 9: 203–226.

    CAS  PubMed  Google Scholar 

  61. Leibovich SJ, Polverini PJ, Shetaprd HM, Wiseman DM, Shively V, Nuseir N . Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 1987; 329: 630–632.

    CAS  PubMed  Google Scholar 

  62. Rastinejad F, Polverini PJ, Bouck NP . Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345–355.

    CAS  PubMed  Google Scholar 

  63. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemmons RS, Frazier WA et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–6628.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dameron KM, Volpert OV, Tainsky MA, Bouck N . Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    CAS  PubMed  Google Scholar 

  65. Bornstein P . Thrombospondins: structure and regulation of expression. FASEB J 1992; 6: 3290–3299.

    CAS  PubMed  Google Scholar 

  66. Giancotti FG, Ruoslahti E . Integrin signaling. Science 1999; 285: 1028–1032.

    CAS  PubMed  Google Scholar 

  67. Pasqualini R, Arap W . Translation of vascular diversity into targeted therapeutics. Ann Hematol 2002; 81 (Suppl 2): S66–S67.

    PubMed  Google Scholar 

  68. Ruoslahti E . Specialization of tumour vasculature. Nat Rev Cancer 2002; 2: 83–90.

    PubMed  Google Scholar 

  69. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA . The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996; 271: 10079–10086.

    CAS  PubMed  Google Scholar 

  70. Gately S, Twardowski P, Tack MS, Cundiff DL, Grella D, Castellino FJ et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 1997; 94: 10868–10872.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Spitz DR . Glucose deprivation-induced oxidative stress in human tumor cells. Ann NY Acad Sci 2000; 899: 349–362.

    CAS  PubMed  Google Scholar 

  72. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    CAS  PubMed  Google Scholar 

  73. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  74. Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA . Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3: 219–231.

    CAS  PubMed  Google Scholar 

  75. Dameron KM, Volpert OV, Tainsky MA, Bouck N . The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol 1994; 59: 483–489.

    CAS  PubMed  Google Scholar 

  76. Hanahan D . Heretable formation of pancreatic β-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogene. Nature 1985; 315: 115–122.

    CAS  PubMed  Google Scholar 

  77. Lopez T, Hanahan D . Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2002; 1: 339–353.

    CAS  PubMed  Google Scholar 

  78. Vogelstein B . The multistep nature of cancer. Trends Genet 1993; 9: 138–141.

    CAS  PubMed  Google Scholar 

  79. Udagawa T, Fernandez A, Achilles EG, Folkman J, D’Amato RJ . Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002; 16: 1361–1370.

    CAS  PubMed  Google Scholar 

  80. Christofori G, Naik P, Hanahan D . Vascular endothelial growth factor and its receptors, flt-1 and flk-1 are expressed in normal pancreatic islets and throughout islet tumorigenesis. Mol Endocrinol 1995; 9: 1760–1770.

    CAS  PubMed  Google Scholar 

  81. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D . VEGF-A has a critical, nenredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 2002; 1: 193–202.

    CAS  PubMed  Google Scholar 

  82. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour growth. EMBO J 2001; 20: 672–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Betsholtz C . Insight into physiological functions of PDGF through genetic studies. Cytokine Growth Factor Rev 2004; 15: 215–228.

    CAS  PubMed  Google Scholar 

  84. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Giraudo E, Inoue M, Hanahan D . An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004; 114: 623–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Joyce JA, Baruch A, Chelade K, Meyer-Morse N, Giraudo E, Tsai FY et al. Cathepsin cysteine proteases are effectors on invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004; 5: 443–453.

    CAS  PubMed  Google Scholar 

  87. Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D . A functional heparan sulfate mimetic implicated both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 2005; 24: 4037–4051.

    CAS  PubMed  Google Scholar 

  88. Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E, Hanahan D . Stage-specific markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2003; 4: 393–403.

    CAS  PubMed  Google Scholar 

  89. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D . Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111: 1287–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bergers G, Javaherian K, Lo K, Folkman J, Hanahan D . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–812.

    CAS  PubMed  Google Scholar 

  91. Parangi S, O’Reilly M, Christofori G, Lander E, Hanahan D . Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 1996; 93: 2002–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vajkoczy P, Menger MD, Vollmar B, Schilling L, Schmiedek P, Hirth KP et al. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1999; 1: 31–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G . Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 2000; 60: 7163–7169.

    CAS  PubMed  Google Scholar 

  94. Casanovas O, Hicklin DJ, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    CAS  PubMed  Google Scholar 

  95. Laird A, Vajkoczy P, Shawver L, Thurnher A, Liang C, Mohammadi M et al. SU 6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 2000; 60: 4152–4169.

    CAS  PubMed  Google Scholar 

  96. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004; 6: 333–345.

    CAS  PubMed  Google Scholar 

  97. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE et al. Soluble EphA receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002; 21: 7011–7126.

    CAS  PubMed  Google Scholar 

  98. Cheng N, Brantley D, Fang WB, Liu H, Fanslow W, Cerretti DP et al. Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia 2003; 5: 445–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Arbeit J, Munger K, Howley P, Hanahan D . Progressive squamous epithelial neoplasia in K14-HPV16 transgenic mice. J Virol 1994; 68: 4358–4368.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Coussens LM, Hanahan D, Arbeit J . Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol 1996; 149: 1899–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith-Mc Cune K, Zhu YH, Hanahan D, Arbeit J . Cross-species comparisons of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HOV16 transgenic mice. Cancer Res 1997; 57: 1294–1300.

    CAS  Google Scholar 

  102. Arbeit J, Olson D, Hanahan D . Upregulation of fibroblast growth factors and their receptors during multistage epidermal carcinogenesis in K14-HPV16 transgenic mice. Oncogene 1996; 13: 1847–1857.

    CAS  PubMed  Google Scholar 

  103. Coussens L, Raymond W, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13: 1382–1397.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Coussens L, Tinkle C, Hanahan D, Werb Z . MMP-9 supplied by bone marrow-derived cells contribute to skin carcinogenesis. Cell 2000; 103: 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sippola-Thiele M, Hanahan D, Howley PM . Cell heritable stages of tumor progression in transgenic mice harboring the bovine papilloma virus type 1 genome. Mol Cell Biol 1988; 9: 925–934.

    Google Scholar 

  106. Bossy-Wtzel E, Bravo R, Hanahan D . Transcription factors JunB and cJun are selectively up-regulated and functionally implicated in fibrosarcoma development. Genes Dev 1992; 6: 2340–2351.

    Google Scholar 

Download references

Acknowledgements

Our studies were supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, National and Regional Funds), Milan, Ministry for Education, the Universities and Research (FIRB 2001 and PRIN 2005), Rome, and Fondazione Italiana per la Lotta al Neuroblastoma, Genoa, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribatti, D., Nico, B., Crivellato, E. et al. The history of the angiogenic switch concept. Leukemia 21, 44–52 (2007). https://doi.org/10.1038/sj.leu.2404402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404402

Keywords

This article is cited by

Search

Quick links