Skip to main content
Log in

Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines

Evidence for p-c-Jun, cytochrome c, and caspase-3 involvement

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Several antidepressants, mainly selective serotonin-reuptake inhibitors (SSRIs) and some tricyclic antidepressants (TCAs), have been shown to possess potent apoptotic activity in different cell lines. Our aim was to screen and select those agents with significant activity and elucidate the molecular pathway underlying this process in rat glioma and human neuroblastoma cell lines. We studied the effect of different antidepressants on apoptotic markers, including: cell viability, DNA fragmentation, cytochrome c (Cyt c) release from mitochondria, and caspase-3-like activity. In addition, the involvement of MAPK genes, c-Jun, and ERK was determined. Paroxetine and fluoxetine, SSRIs, clomipramine, a TCA, but not imipramine or mianserin (an atypical antidepressant), caused apoptosis in both cell lines, as assessed by flow cytometry of propidium iodide-stained C6 cells and typical fluorescence microscopy in glioma cells. These apoptotic changes were preceded by rapid increase in p-c-Jun levels, Cyt c release from mitochondria, and increased caspase-3-like activity. Assessment of paroxetine cytotoxicity in primary mouse brain and neuronal cultures showed significantly lower sensitivity to the drug’s proapoptotic activity. These results strongly suggest that selected antidepressants induce apoptosis in neuronal and glial cell lines. Activation of p-c-Jun and subsequent increased Cyt c mitochondrial release participate in the apoptotic mechanism of the antidepressant. The high sensitivity to these drugs of the cancer cell, compared with primary brain tissue, suggests the potential use of these agents in the treatment of brain-derived tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul M., Logothetis C. J., and Hoosein N. M. (1995) Growth inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell-lines. J. Urol. 154, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Altamura A. C., Moro A. R., and Percudani M. (1994) Clinical pharmacokinetics of fluoxetine. Clin. Pharma-cokinet. 26, 201–214.

    Article  CAS  Google Scholar 

  • Azmitia E. C. (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Barbey J. T. and Roose S. P. (1998) SSRI safety in overdose. J. Clin. Psychiatry 59(Suppl. 15), 42–48.

    PubMed  CAS  Google Scholar 

  • Behrens A., Sibilia M., and Wagner E. F. (1999) Aminoterminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 21, 326–329.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P., Petronilli V., Di Lisa F., and Forte M. A. (2001) A mitochondrial perspective on cell death. Trends Biochem. Sci. 26, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Beutner G., Ruck A., Riede B., and Brdizka D. (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate cyclase display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368, 7–18.

    Article  PubMed  CAS  Google Scholar 

  • Bolo N. R., Hode Y., Nedelec J. F., Laine E., Wagner G., and Macher J. P. (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23, 428–438.

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E., Newmeyer D. D., and Green D. R. (1998) Mitochondrial release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Borenfreund E. and Puerner J. A. (1984) A simple procedure using monolayer cultures for cytotoxicity assays (HTR/NR-90). J. Tissue Culture Methods 9, 7–9.

    Article  Google Scholar 

  • Brustugun O. T., Fladmark K. E., Doskeland S. O., Orrenius S., and Zhivotovsky B. (1998) Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ. 5, 660–668.

    Article  PubMed  CAS  Google Scholar 

  • Castren E. (2004) Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 4, 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Derijard B., Raingeaud J., Barrett T., Wu I. H., Han J., Ulevitch R. J., and Davis R. J. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267, 682–687.

    Article  PubMed  CAS  Google Scholar 

  • Dickens M., Rogers J. S., Cavanagh J., Raitano A., Xia Z., Halpern J., et al. (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693–696.

    Article  PubMed  CAS  Google Scholar 

  • Estus S., Zaks W. J., Freeman R. S., Gruda M., Bravo R., and Johnson E. M. Jr. (1994) Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J. Cell Biol. 127, 1717–1727.

    Article  PubMed  CAS  Google Scholar 

  • Gil-Ad I., Offen D., Shtaif B., Gallili-Mosberg R., and Weizman A. (1998) Haloperidol induces neurotoxicity in mouse embryo brain tissue. Evidence for oxidative damage mechanism, and implication for tardive dyskinesia, in Progress in Alzheimer’s and Parkinson’s Diseases, Fisher, A., Yoshida, M., and Hanin, I., (eds.), Plenum Press, New York, pp. 163–169.

    Google Scholar 

  • Gil-Ad I., Shtaif B., Levkovitz Y., Dayag M., Zeldich E., and Weizman A. (2004) Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell-lines. J. Mol. Neurosci. 22, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin G. M. (1992) Tricyclic and newer antidepressants, in Handbook of Affective Disorders, Paykel, E. S., (ed.), Churchill Livingstone, Edinburgh, pp. 327–345.

    Google Scholar 

  • Gram L. F. (1994) Fluoxetine. N. Engl. J. Med. 17, 1354–1361.

    Article  Google Scholar 

  • Ham J., Babij C., Whitfield J., Pfarr C. M., Lallemand D., Yaniv M., and Rubin L. L. (1995) A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927–939.

    Article  PubMed  CAS  Google Scholar 

  • Harel A., Bloch O., Vardi P., and Bloch K. (2002) Sensitivity of HaCat keratinocytes to diabetogenic toxins. Biochem. Pharmacol. 63, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F. and Barden N. (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr. Rev. 177, 187–205.

    Article  Google Scholar 

  • Karson C. N., Newton J. E., Livingston R., Jolly J. B., Cooper T. B., Sprigg J., and Komoroski R. A. (1993) Human brain fluoxetine concentrations. J. Neuropsychiatry Clin. Neurosci. 5, 322–329.

    PubMed  CAS  Google Scholar 

  • Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Levkovitz Y. and Baraban J. M. (2001) A dominant negative inhibitor of the Egr family of transcription regulatory factors suppresses cerebellar granule cell apoptosis by blocking c-Jun activation. J. Neurosci. 21, 5893–5901.

    PubMed  CAS  Google Scholar 

  • Mercier G., Lennon A. M., Renouf B., Dessouroux A., Ramauge M., Courtin F., and Pierre M. (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J. Mol. Neurosci. 24(2), 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Nicolletti I., Migliorato G., Pagliacci M. C., Grimsani F., and Riccardi C. (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279.

    Article  Google Scholar 

  • Peer D., Dekel Y, Melikhov D., and Margalit R. (2004) Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngenic and in human xenograft tumor models. Cancer Res. 64, 7562–7569.

    Article  PubMed  CAS  Google Scholar 

  • Post A., Crochemore C., Uhr M., Holsberg F., and Behl C. (2000) Differential induction of NF-κB activity and neural cell death by antidepressants in vitro. Eur. J. Neurosci. 12, 4331–4337.

    Article  PubMed  CAS  Google Scholar 

  • Preskorn S. H. (1996) Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors, Professional Communications, Caddo, OK.

    Google Scholar 

  • Russo-Neustadt A. A., Alejandre H., Garcia C., Ivy A. S., and Chen M. J. (2004) Hippocampal brain-derived neuro-trophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuro-psychopharmacology 29, 2189–2199.

    CAS  Google Scholar 

  • Seckel J. R. and Fink G. (1992) Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology 55, 621–626.

    Article  Google Scholar 

  • Serafeim A., Holder M. J., Grafton G., Chamba A., Drayson M. T., Luong Q. T., et al. (2003) Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkittlymphoma cells. Blood 101, 3212–3219.

    Article  PubMed  CAS  Google Scholar 

  • Spanova A., Kovaru H., Lisa V., Lukasova E., and Rittich B. (1997) Estimation of apoptosis in C6 glioma cells treated with antidepressants. Physiol. Res. 46, 161–164.

    PubMed  CAS  Google Scholar 

  • Talanian R. V., Quinlan C., Tranz S., Hackett M. C., Mankovieh J. A., Banach D., et al. (1997) Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682.

    Article  PubMed  CAS  Google Scholar 

  • Watson A., Eilers A., Lallemand D., Kyriakis J., Rubin L. L., and Ham J. (1998) Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. J. Neurosci. 18, 751–762.

    PubMed  CAS  Google Scholar 

  • Weitsman G., Ravid A., Liberman U., and Koren R. (2003) vitamin D enhances caspase-dependent and caspase-independent TNFα-induced breast cancer cell death: the role of reactive oxygen species and mitochondria. Int. J. Cancer 106, 178–186.

    Article  PubMed  CAS  Google Scholar 

  • Xia Z., DePierre J. W., and Nassberger L. (1998) Modulation of apoptosis induced by tricyclic antidepressants in human peripheral lymphocytes. J. Biochem. Mol. Toxicol. 12, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Xia Z., DePierre J. W., and Nassberger L. (1996) The tricyclic antidepressants clomipramine and citalopram induce apoptosis in cultured human lymphocytes. J. Pharm. Pharmacol. 48, 115–116.

    PubMed  CAS  Google Scholar 

  • Xia Z., Dickens M., Raingeaud J., Davis R. J., and Greenberg M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechiel Levkovitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levkovitz, Y., Gil-Ad, I., Zeldich, E. et al. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines. J Mol Neurosci 27, 29–42 (2005). https://doi.org/10.1385/JMN:27:1:029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:029

Index Entries

Navigation