Genetic mapping of a mouse modifier gene that can prevent ALS onset

Genomics. 2000 Dec 1;70(2):181-9. doi: 10.1006/geno.2000.6379.

Abstract

Mutations in the cytoplasmic Cu/Zn superoxide dismutase (SOD1) gene on human chromosome 21q22.1 cause 10-20% of familial amyotrophic lateral sclerosis (ALS) cases. The expression of the ALS phenotype in mice carrying the murine G86R SOD1 mutation is highly dependent upon the mouse genetic background. This is similar to the phenotypic variation observed in ALS patients containing identical SOD1 mutations. In the FVB/N background, mice expressing mG86R SOD1 develop an ALS phenotype at approximately 100 days. However, when these mice were bred into a mixed background of C57Bl6/129Sv, the onset of the ALS phenotype was delayed (143 days to >2 years). Using 129 polymorphic autosomal markers in a whole genome scan, we have identified a major genetic modifier locus with a maximum lod score of 5.07 on mouse chromosome 13 between D13mit36 and D13mit76. This 5- to 8-cM interval contains the spinal muscular atrophy (SMA)-associated gene Smn (survival motor neuron) and seven copies of Naip (neuronal apoptosis inhibitory protein), suggesting a potential link between SMA and ALS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics*
  • Animals
  • Base Sequence
  • DNA Primers
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Pedigree
  • Phenotype
  • Superoxide Dismutase / genetics*

Substances

  • DNA Primers
  • Superoxide Dismutase