Effects of IFN-B on TRAIL and Decoy Receptor Expression in Different Immune Cell Populations from MS Patients with Distinct Disease Subtypes

Autoimmune Dis. 2010 Dec 28:2011:485752. doi: 10.4061/2011/485752.

Abstract

Using quantitative RT-PCR, we compared mRNA levels for TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] and its receptors in various immune cell subsets derived from the peripheral blood of untreated normal subjects (NS) and patients with distinct subtypes of multiple sclerosis (MS): active relapsing-remitting MS (RRA), quiescent relapsing-remitting MS (RRQ), secondary-progressive MS (SPMS) or primary-progressive MS (PPMS). Consistent with a role for TRAIL in the mechanism of action of interferon-β (IFN-β), TRAIL mRNA levels were increased in monocytes from patients clinically responsive to IFN-β (RRQ) but not those unresponsive to this therapeutic (RRA). TRAIL-R3 (decoy receptor) expression was elevated in T cells from untreated RRMS patients while IFN-β therapy reversed this increase suggesting that IFN-β may promote the apoptotic elimination of autoreactive T cells by increasing the amount of TRAIL available to activate TRAIL death receptors. Serum concentrations of soluble TRAIL were increased to a similar extent by IFN-β therapy in RRQ, RRA and SPMS patients that had not generated neutralizing antibodies against this cytokine. Although our findings suggest altered TRAIL signaling may play a role in MS pathogenesis and IFN-β therapy, they do not support use of TRAIL as a surrogate marker for clinical responsiveness to this therapeutic.