Ultrastructural abnormalities with inclusions in Onuf's nucleus in motor neuron disease (amyotrophic lateral sclerosis)

Neuropathol Appl Neurobiol. 1995 Aug;21(4):327-40. doi: 10.1111/j.1365-2990.1995.tb01067.x.

Abstract

This study describes an ultrastructural examination focused on motor neurons in Onuf's nucleus in the spinal cord of four control patients without neurological disease (45-70 years) and six motor neuron disease (MND) patients (38-79 years; duration 8 months-19 years) who showed no somato-vesical dysfunction. Prompted by recent studies suggesting some sphincteric motor neurons may succumb to MND, this study sought to determine whether the wider population of neurons in Onuf's nucleus display ultrastructural cytopathology which is normally undetectable in histological preparations. Spinal cords were removed 3-20 h after death, and 1 mm slices of cord rapidly fixed in modified Karnovsky medium were processed for both light- and electronmicroscopy. 'Control motor neurons' had intact neuronal and nuclear membranes. Nissl bodies chiefly comprised ordered structures of alternate lamellae of rough endoplasmic reticulum and arrays of polyribosomes. The Golgi complexes consisted of multilamellated curvilinear stacks of ER. No intraneuronal filamentous or Bunina body inclusions were observed, but occasional axonal spheroids were seen in the neuropil. In MND, histological evidence of sparing in Onuf's nucleus was associated with abnormal ultrastructure of the motor neurons. Some sphincteric neurons were atrophic, whereas in the others, Nissl bodies were reduced in number, showed loss of structural organization or comprised polyribosomal aggregates. Golgi complexes had disrupted lamellated organization or consisted solely of distended ER. Intraneuronal filamentous Lewy-body or skein-like inclusions and Bunina bodies were identified in Onuf's nucleus of three subjects (duration of MND 8 months-2 years). The results of the present study indicate that Onuf's nucleus is vulnerable in MND, and preservation of sphincter function with qualitative histological evidence of 'sparing' does not necessarily imply a corresponding lack of ultrastructural cytopathology in this nucleus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Amyotrophic Lateral Sclerosis / metabolism
  • Amyotrophic Lateral Sclerosis / pathology*
  • Animals
  • Cats
  • Female
  • Golgi Apparatus / ultrastructure
  • Humans
  • Inclusion Bodies / ultrastructure
  • Male
  • Microscopy, Electron
  • Middle Aged
  • Motor Neurons / ultrastructure
  • Nissl Bodies / ultrastructure
  • Spinal Cord / metabolism
  • Spinal Cord / pathology*
  • Spinal Cord / ultrastructure