Article Text

Download PDFPDF
The role of diffusion barriers in determining the excitability of peripheral nerve
  1. K. N. Seneviratne,
  2. O. A. Peiris
  1. Department of Physiology, University of Ceylon, Colombo, Ceylon
  2. Department of Medicine, University of Ceylon, Colombo, Ceylon
  3. Department of Faculty of Medicine, University of Ceylon, Colombo, Ceylon


    The excitability changes occurring in normal isolated peripheral nerves of rats have been studied during exposure to hypoxic and anoxic conditions before and after the administration of insulin. The changes observed have been explained in terms of the dynamics of K' equilibrium in the periaxonal spaces, and attention is drawn to the importance of the relative impermeability of the periaxonal diffusion barrier in determining this equilibrium. Isolated peripheral nerves from alloxan-diabetic rats, studied under similar conditions, show significant differences in the sequence of their excitability changes. It has been shown that the rate of change of excitability in these nerves is slower than those of control nerves. These results have now been interpreted in terms of the K' changes in the periaxonal space. It is concluded that these slower excitability changes are due to an increase in the permeability of the diffusion barrier of the diabetic nerve to potassium.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.