Article Text
Abstract
Descending bulbospinal pathways that employ specific neurotransmitter substances are known to be capable of modulating segmental reflex activity in the experimental animal. To determine whether this might also occur in man correlations have been sought between the activity in spinal reflex pathways and the lumbar cerebrospinal fluid (CSF) concentrations of 5-hydroxyindolacetic acid (5-HIAA), 3 methoxy-4-hydroxyphenylglycol (MHPG), and homovanillic acid (HVA) in 12 patients with complete or virtually complete spinal lesions. The concentrations of 5-HIAA and MHPG in lumbar CSF ARE REDUCED AFTER COMPLETE OR VIRTUALLY COMPLETE SPINAL LESIONS IN MAN. This may occur within 18 days of the lesion. MHPG concentrations appear to be inversely related to the level of the lesion. The HVA concentration in lumbar CSF is reduced when there is obstruction of the CSF pathways. No relationship could be demonstrated between the concentrations of 5-HIAA or MHPG in lumbar CSF and the activity in the spinal monosynaptic pathway (estimated from the proportion of the motoneurone pool activated by the Achilles tendon reflex or H reflex) or the activity of a spinal inhibitory mechanism (estimated by the degree of vibratory inhibition of the monosynaptic reflex). Patients with a tonic vibration reflex (TVR) tended to have higher MHPG levels. There appeared to be an association between low CSF HVA and enhanced vibratory inhibition of the monosynaptic reflex in the nine patients whose spinal lesions were complete.