Article Text

Download PDFPDF
Research paper
Mapping the contribution and strategic distribution patterns of neuroimaging features of small vessel disease in poststroke cognitive impairment


Objectives Individual neuroimaging features of small vessel disease (SVD) have been reported to influence poststroke cognition. This study aimed to investigate the joint contribution and strategic distribution patterns of multiple types of SVD imaging features in poststroke cognitive impairment.

Methods We studied 145 first-ever ischaemic stroke patients with MRI and Montreal Cognitive Assessment (MoCA) examined at baseline. The local burdens of acute ischaemic lesion (AIL), white matter hyperintensity, lacune, enlarged perivascular space and cross-sectional atrophy were quantified and entered into support vector regression (SVR) models to associate with the global and domain scores of MoCA. The SVR models were optimised with feature selection through 10-fold cross-validations. The contribution of SVD features to MoCA scores was measured by the prediction accuracy in the corresponding SVR model after optimisation.

Results The combination of the neuroimaging features of SVD contributed much more to the MoCA deficits on top of AILs compared with individual SVD features, and the cognitive impact of different individual SVD features was generally similar. As identified by the optimal SVR models, the important SVD-affected regions were mainly located in the basal ganglia and white matter around it, although the specific regions varied for MoCA and its domains.

Conclusions Multiple types of SVD neuroimaging features jointly had a significant impact on global and domain cognitive functionings after stroke on top of AILs. The map of strategic cognitive-relevant regions of SVD features may help clinicians to understand their complementary impact on poststroke cognition.

  • white matter hyperintensity
  • enlarged perivascular space
  • lacune
  • atrophy
  • small vessel disease
  • cognitive impairment
  • ischemic stroke
  • support vector regression
  • feature selection
View Full Text

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.