Article Text

other Versions

Download PDFPDF
Original research
Associations of longitudinal plasma p-tau181 and NfL with tau-PET, Aβ-PET and cognition
  1. Boris Stephan Rauchmann1,2,
  2. Thomas Schneider-Axmann2,
  3. Robert Perneczky2,3,4,5
  4. For the Alzheimer's Disease Neuroimaging Initiative (ADNI)
  1. 1Department of Radiology, University Hospital, LMU Munich, Munich, Germany
  2. 2Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
  3. 3German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany
  4. 4Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
  5. 5School of Public Health, Ageing Epidemiology (AGE) Research Unit, Imperial College London, London, Germany
  1. Correspondence to Professor Robert Perneczky, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; robert.perneczky{at}med.uni-muenchen.de

Abstract

Objective To explore if changes over time of plasma phosphorylated tau (p-tau)181 and neurofilament light chain (NfL) predict future tau and amyloid β (Aβ) PET load and cognitive performance, we studied a subsample of the Alzheimer’s disease (AD) neuroimaging cohort with longitudinal blood peptide assessments.

Methods Eight hundred and sixty-five AD Neuroimaging Initiative participants were included. Using established AD cut-points for the cerebrospinal fluid concentrations of Aβ42, total-tau and p-tau181, subjects were classified according to the National Institute on Aging-Alzheimer’s Association research framework, grouping markers into those of Aβ deposition (A), tau pathology (T) and neurodegeneration (N). Analysis of variance was used to compare the plasma biomarker data between the ATN groups. The rate of change over time of p-tau181 and NfL was obtained from linear mixed effects models and compared between the ATN groups. Linear regression analysis was used to investigate the association of baseline plasma biomarker concentrations and rates of change with future PET tau and Aβ load and cognitive performance.

Results P-tau181 and NfL plasma concentrations increased along the AD spectrum, but only NfL showed greater rates of change in AD patients versus controls. Cognitive performance was associated cross-sectionally with NfL in all subgroups, and with p-tau181 only in AD spectrum individuals. The baseline concentrations of both plasma markers predicted PET Aβ and tau load and cognitive performance. The rate of change of NfL predicted future PET tau and cognitive performance.

Conclusions P-tau and NfL behave differently within the same individuals over time and may therefore offer complementary diagnostic information.

Trial registration number NCT02854033, NCT01231971.

Data availability statement

Data are available in a public, open access repository. All ADNI data are deposited in a publicly accessible repository and can be accessed at adni.loni.usc.edu.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data are available in a public, open access repository. All ADNI data are deposited in a publicly accessible repository and can be accessed at adni.loni.usc.edu.

View Full Text

Footnotes

  • Collaborators Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

  • Contributors B-SR: study concept and design; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript for important intellectual content; Statistical analysis. TS-A: analysis and interpretation of data; critical revision of the manuscript for important intellectual content; statistical analysis. RP: study concept and design; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript for important intellectual content; administrative, technical and material support; study supervision.

  • Funding Funding: Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of DefenseDefence award number W81XWH-12-2-0012). ADNI is funded by the National Institute on AgingAgeing, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research & Development; Johnson & Johnson Pharmaceutical Research & Development; Lumosity; Lundbeck; Merck & Co; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organisation is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.