Measurement of extradural pressure and its relationship to other intracranial pressures
An experimental and clinical study

N. J. CORONEOS, D. G. McDOWALL, R. M. GIBSON, V. W. A. PICKERODT, AND N. P. KEANEY

From the Department of Anaesthesia, The University of Leeds, and Department of Neurosurgery, The General Infirmary, Leeds

SUMMARY Disadvantages associated with the use of ventricular catheters for the prolonged measurement of intracranial pressure have resulted in the search for an alternative technique. Measurement of pressure from the extradural space is one such possibility, but widespread acceptance of this procedure has been limited by the technical difficulties associated with this measurement and lack of information on the relationship between cerebrospinal fluid and extradural pressures. A study to investigate this relationship and to develop a simple and effective technique for measuring extradural pressure is described.

In certain patients with head injuries and intracranial space-occupying lesions, acute rises in intracranial pressure producing brain shift or impairment of the cerebral circulation—with subsequent secondary brain damage—may occur before changes in vital signs are recognized. Furthermore, the reduction of intracranial pressure by means of one of the several methods currently available is too often unpredictable. For these reasons patient management may be greatly assisted, and more readily programmed, if intracranial pressure is directly monitored (Lundberg, Troupp, and Lorin, 1965; Johnston, Johnston, and Jennett, 1970).

Lundberg (1960) described a technique for the direct closed measurement of intraventricular pressure which has been widely accepted. However, this procedure has several clinical disadvantages, as recognized by Lundberg (1972) himself. Because of the disadvantages, much attention has been focused on developing a simple alternative technique which does not require penetration of the dura-arachnoid membranes. Many of these techniques employ implanted electronic pressure-sensitive transducers which often give technical difficulties. Furthermore, the clinical interpretation of the data is impeded by lack of firm knowledge of the relationship between pressure recorded in the extradural space and the intracranial pressure.

The aims of this study were: (1) to explore the relationship between extradural pressure, supratentorial subarachnoid pressure and ventricular pressure; (2) to assess the use of latex balloons as pressure-sensing devices in the extradural and subarachnoid spaces; (3) to evaluate a metal capsule, to be described, for clinical use in measuring extradural pressures over prolonged periods with minimal discomfort to the patient.

METHODS

ANIMAL STUDIES The experiments were carried out on 12 dogs, but two baboons were also studied because the dura mater in these primates is more like that in man, being only loosely attached to the skull. The dogs were intubated after induction with thiopentone sodium, and anaesthesia maintained with nitrous oxide, oxygen, and halothane. Artificial ventilation to normocarbia and normoxia was achieved with the aid of muscle relaxants. Body temperature was maintained at 37°C. The baboons were premedicated with phencyclidine 0·5–1 mg/kg.
and the anaesthetic technique was the same as for
dogs, except that the induction was inhalational
with nitrous oxide, oxygen, and halothane.

Arterial blood-pressure, central venous pressure
and intracranial pressures were measured by elec-
tronic transducers mounted at the same level as the
cisterna magna, all animals being in the right lateral
position. Pressures were recorded on a multi-channel
physiological recorder. At least one hour elapsed
after the end of the operative procedures (to be
described) before the recording of pressures.

1. Latex balloons The compliance of small latex
baloons was measured in vitro by adding incre-
ments of saline, to a total of 2 ml. There was no
significant increase in pressure recorded from these
baloons over this volume range.

The balloons contained sufficient fluid to fill their
dead space, care being taken to avoid air bubbles. In
dogs the balloons were implanted in the extra-
dural space through a burr hole, after carefully
stripping away the dura mater and achieving haemo-
stasis. The balloon then lay in the extradural space
away from the skull opening. A catheter was inserted
into a lateral ventricle through a separate burr hole.
All openings in the skull were closed with dental
cement. A standard volume (0.5 ml.) of fluid was
injected into each balloon after insertion into the
extradural space, and the pressures from both sites
recorded.

![Diagram of stainless steel extradural capsule](image)

FIG. 1. Stainless steel extradural capsule.

2. Extradural metal capsule A small stainless steel
capsule was constructed (Fig. 1). It was 9 mm in
diameter and 2 mm in height, with multiple side
holes connecting with a central catheter. Side holes,
rather than an end hole, were chosen to facilitate
recording and to minimize occlusion by the dura
mater. This device was inserted in seven dogs and
two baboons through a burr hole, to lie in the extra-
dural space under one parietal eminence.

A latex balloon was inserted in the subarachnoid
space through another burr hole on the opposite
side, to lie over the anterolateral surface of the
parietal cortex. Each balloon was carefully filled
with 0.5 ml. saline. All burr holes were sealed with
dental cement. A fine catheter was inserted under
direct vision through the tectorial membrane and its
tip positioned to lie in the cisterna magna. A three-
way tap attached to this catheter allowed either the
recording of pressure or small infusions of normal
saline into the posterior fossa (Fig. 2).

Saline (0.2 ml.) was injected into the extradural
capsule and, between three and 15 minutes later,
pressures were simultaneously obtained from all
three measuring sites, while the intracranial pressure
was altered by means of small intermittent infusions
into the cisterna magna. In each animal there were
at least four such studies over a wide range of pres-
sures. All measurements were completed within six
hours of insertion of the extradural capsule. At the
end of each experiment methylene blue was injected
into the capsule to establish whether a complete seal
had been achieved around the capsule. Three dogs
were excluded from the results because a leak was
demonstrated.

CLINICAL STUDIES Patients considered to be at risk
from increased intracranial pressure in the period
after neurosurgery had a ventricular catheter
inserted for pressure measurement. An extradural
capsule, modified for clinical use by incorporating a
threaded metal plug to allow fixation to the skull
(Fig. 3) was implanted through a separate burr hole
into the extradural space.

The extradural pressure capsule was sited over
the convexity of the skull in the frontal or parietal
area. An incision 3 cm long was made and the peri-
cranium stripped from the skull. A skull perforator
with matching cone and rose were used to make the
skull opening. Alternatively, the opening could be
made with an electric or compressed air-driven skull
perforator. It is essential that the diameter of the
hole is such that the extradural pressure capsule will
fit securely, both from the point of view of patient
safety and for obtaining reliable recordings. The
extradural pressure capsule is made of EN58 stain-
less steel, and has a self-tapping thread. In order to
assist fixation using minimum force on the capsule
itself, a tapping screw was also used to prepare the
skull to receive the capsule. Histacryl tissue glue was
used in the early cases to seal the capsule in position,
but this technique was given up since use of the glue
is unnecessary when the capsule is properly and
firmly inserted.

Before inserting the capsule into the skull it was
necessary to secure haemostasis in respect of the
dural surface and the extradural space. If small
vessels on the surface of the dura mater bled they
were gently controlled with coagulation diathermy
current. If extradural oozing of blood persisted, this
was stopped by tiny pieces of Surgicel tucked gently

FIG. 2. Schematic diagram of dog study. Cerebrospinal fluid pressure is altered by infusion of fluid into cisterna magna. P_{ED}, pressure recorded from extradural space. P_{CSF}, pressure recorded from supratentorial subarachnoid space. P_{PF}, pressure recorded from posterior fossa.

into the extradural space. This was not often necessary unless the capsule had been placed near the midline of the skull. Before inserting the capsule the burr hole opening and the exposed dura mater were irrigated thoroughly with saline at body temperature to remove any debris, bone dust or blood. A spray of topical antibiotic (Polybactrin) was also used to minimize the risk of infection. The scalp was sutured in a single layer with interrupted black silk sutures. When the capsule was removed the wound was checked under good illumination. No evidence of haemorrhage or infection was found in our cases. The wound was always closed in a single layer, no deep suture being employed in the secondary closure.

The practical clinical problems encountered in this study were:

a. The capsule could not be inserted if the skull opening was too small. Similarly, if the opening were even marginally too large the capsule was unsafe and recordings were not valid. This difficulty can be overcome by the use of a tapering screw and work on this is in progress.

b. The head bandages had to be arranged around the device in such a way as to allow access to it without disturbing the wound or the head dressing.

c. In very thick skulls—for example, in patients with acromegaly or Paget's disease—the capsule may be too small and for these patients a deeper capsule is necessary. Similarly, for children a shorter capsule was used, otherwise the skin could not be closed over it.

d. Where extradural bleeding or oozing welled up immediately after its insertion, the capsule had to be removed, cleansed, and rinsed through before reinsertion.

The technical aspects of the use of the capsule did not prove difficult or troublesome in our hands, and the insertion and removal processes are now routine. They are mentioned none the less as guidance to others who may use the technique.
Measurement of extradural pressure and its relationship to other intracranial pressures

Over a 12 month period 25 such patients were monitored by both techniques. The extradural and ventricular catheter were connected to a miniature electronic transducer which was mounted externally on the head bandage and could therefore be readily calibrated. Pressure measurements were taken from both sites, three to 15 minutes after injecting the capsule with 0.2 ml. saline. The capsule was removed under local analgesia, usually 48 to 72 hours after operation, when measurements were no longer considered necessary for clinical management.

RESULTS

ANIMAL STUDIES 1. Latex balloons The extradural pressure (EDP) readings obtained from latex balloons were unreliable, either over-estimating or under-estimating the extradural pressure in an unpredictable manner, when filled with the standard volume of 0.5 ml. In order to study this further, in one dog 0.1 ml. aliquots of saline, to a total volume of 0.5 ml., were injected and removed, and pressures from both the balloon and ventricle were recorded after each volume change. The extradural pressure measured was dependent upon the volume of fluid in the balloon, and upon whether the balloon was being filled or emptied (Fig. 4). There was good correlation between extradural and intraventricular pressure (IVP) for a short but inconstant time (minutes), following the temporary distension of the balloon with 0.5 ml., at an initial volume of 0.5 ml.

2. Extradural metal capsule During several

FIG. 4. Graph showing the effect of altering the volume of fluid in extradural balloons on the accuracy of the pressure recorded from the system. EDP, extradural pressure. IVP, intraventricular—measured by catheter. Upper curve shows the effect of adding fluid to the balloon; lower curve the effect of withdrawing fluid.

FIG. 5. Comparison of posterior fossa pressure (measured by catheter) and supratentorial subarachnoid pressure (measured by latex balloons) in dogs. PFP, posterior fossa pressure. SAP, subarachnoid pressure.

FIG. 6. Comparison of extradural pressure (measured by capsule) and supratentorial subarachnoid pressure (measured by latex balloons) in dogs. Broken line—line of identity.
FIG. 7. Extradural pressure (means and standard errors) observed from capsule with 5 mmHg changes in supratentorial subarachnoid pressure in four dogs.

FIG. 8. Effect on accuracy of measurement of EDP of a poorly-sealed capsule. Arrow denotes injection of 0-2 ml. saline into the capsule. SAP, supratentorial subarachnoid pressure. Horizontal bars indicate halothane administration.

FIG. 9. Relationship of extradural pressure to intraventricular pressure within six hours of craniotomy. Solid line—regression line. Broken line—line of identity.

separate infusions into the cisterna magna of four dogs, 103 observations were made of pressures recorded simultaneously from the posterior fossa and the supratentorial subarachnoid cerebrospinal fluid. Figure 5 demonstrates the close correlation found between these two pressures. Figure 6 shows similar close correlation between extradural and supratentorial subarachnoid pressures, based on 156 measurements from the four dogs. All points lie close to the line of identity, except in one dog during one infusion. Subsequent infusions in this dog produced results consistent with those found in the remaining animals. The mean values shown in Fig. 7 demonstrate that, over the entire range of pressures that would commonly be encountered, no appreciable pressure gradient occurred across the dura mater under the conditions of measurement described. The attainment of a completely leak-free system was seen to be essential because any decompression of the extradural space led to underestimation of pressure (Fig. 8). In the baboon, similar results were obtained for the relationship between extradural pressure and supratentorial subarachnoid pressure.

CLINICAL STUDIES In five of the 25 patients a comparison between the extradural and ven-

tricular pressures could not be made postoperatively. Difficulty in locating a small ventricle prevented the insertion of a catheter in one and obstruction or displacement of the catheter accounted for the exclusion of two others. Of the remaining two patients, one had a separate burr hole 5 mm away from the capsule and it was considered that decompression from the extradural space was occurring through this. In the last patient, the capsule was palpably loose in the burr hole. This problem
has not recurred since the insertion procedure has been modified to include the use of a bone-tapping tool.

In the remaining 20 patients the extradural and intraventricular pressures were compared and the results have been divided into three groups, based on time of measurement after insertion of the extradural capsule.

1. Readings within six hours of inserting extradural capsule

For various reasons unrelated to the extradural device, readings were not taken from four patients within six hours of operation, reducing this group to 16. Figure 9 shows the relationship between EDP (Y-axis) and IVP (X-axis) obtained from 178 observations taken between three and 15 minutes after flushing the capsule. The readings form a band which crosses the line of identity, with the extradural pressure tending to exceed the intraventricular pressure at low values of the latter. With ventricular pressures greater than 100 mm H_2O, the converse relationship may be noted. Of the seven patients in whom the intraventricular pressure was low, all had had removal of sub-

![Figure 9](https://example.com/fig9.png)

FIG. 9. Relationship between EDP (Y-axis) and IVP (X-axis).

![Figure 10](https://example.com/fig10.png)

FIG. 10. Relationship of extradural pressure to intraventricular pressure within 6 to 24 hours after craniotomy. Solid line—regression line. Broken line—line of identity.

![Figure 11](https://example.com/fig11.png)

FIG. 11. Relationship of extradural pressure to intraventricular pressure within 24 to 48 hours of craniotomy. Solid line—regression line. Broken line—line of identity.

![Figure 12](https://example.com/fig12.png)

FIG. 12. Effect of injecting 0.2 ml saline into extradural capsule in a post-craniotomy patient. V, ventricular trace. F, time of injection. E, extradural trace. Top trace: time marker. Gaps at one minute intervals.
TABLE

<table>
<thead>
<tr>
<th>Period after operation (hr)</th>
<th>Readings (no.)</th>
<th>Correlation coefficient</th>
<th>Slope of regression line</th>
<th>Intercept of regression line (mm H2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>178</td>
<td>0.48</td>
<td>0.59</td>
<td>+48</td>
</tr>
<tr>
<td>24</td>
<td>222</td>
<td>0.64</td>
<td>0.67</td>
<td>+48</td>
</tr>
<tr>
<td>48</td>
<td>220</td>
<td>0.79</td>
<td>1.06</td>
<td>+84</td>
</tr>
</tbody>
</table>

stantial quantities of cerebrospinal fluid at operation.

2. Readings about 24 hours after insertion of extradural capsule Figure 10 shows the values obtained from 222 observations on 20 patients after flushing the extradural capsule. At this stage the band of readings has moved closer to the line of identity.

3. Readings about 48 hours after insertion of extradural capsule All but 16 of the 220 readings of extradural pressure taken from 18 patients at this time lie above the line of identity, with the line of best fit being 80–100 mm H2O higher than, and approximately parallel with, the line of identity (Fig. 11). In almost all patients flushing of the capsule resulted in a localized rise in extradural pressure. In none was more than 50 mm H2O of this pressure increase transmitted to the ventricle (Fig. 12).

In general, the magnitude and duration of the extradural pressure rise after flushing depended on the time that had elapsed after insertion of the capsule.

The correlation coefficients and values for intercept and slope of the calculated regression lines are shown in the Table.

DISCUSSION

The direct closed measurement of intraventricular pressure described by Lundberg (1960) was a significant step forward in the management of head injuries, and allowed a quantitative assessment of the efficacy of the measures designed to reduce cerebral oedema (Lundberg, et al., 1965; Coe, Nelson, Rudenberg, and Garza, 1967; Johnston, et al., 1970). However, this technique has serious disadvantages—namely, the difficulty of locating a displaced or compressed ventricle, alteration in intracranial hydrodynamics with possible disastrous effects when cerebrospinal fluid is withdrawn or inadvertently lost (Schettini, McKay, Majors, Mahig, and Nevis, 1971; Nornes, personal communication) the possibility of introducing infection directly into the ventricular system, and difficulty in maintaining an unobstructed catheter/manometer tube system over a prolonged period (Lundberg, 1960; Lundberg et al., 1965; Jacobson and Rothballer, 1967). In our own series of 25 patients, the ventricle could not be located in one, and obstruction or displacement of the catheter occurred in two. In no case was there clinical evidence of infection.

In addition to intraventricular pressure measurement, a number of pressure-sensing devices have been implanted intracranially. In the subdural space, fluid-filled latex balloons (Hoppenstein, 1965), pneumatic switches (Numoto, Slater, and Donaghy, 1966) and electronic transducers (Hulme and Cooper, 1966; Coe et al., 1967; Richardson, Hide, and Eversden, 1970) have been used. This approach, however, involves breaching the integrity of the dura mater, and therefore miniature transducers of varying design (Nornes and Serck-Hanssen, 1970; Schettini, McKay, Majors, Mahig, and Nevis, 1971) have been designed for implantation in the extradural space. These have not been widely accepted for clinical monitoring because of technical difficulties concerning zero drift, calibration, and hysteresis.

It was for these reasons that we decided to evaluate a simple system for measuring extradural pressure. The first approach was to test latex balloons in the extradural space of experimental animals, where they were found to be unreliable; pressures recorded were dependent on the contained volume and on the in situ hysteresis of individual balloons. Similarly unreliable results were obtained in a few post-craniotomy patients in whom small balloons were implanted in the extradural space. A possible explanation of the unreliability of the balloon readings is that adherence of the dura mater to the skull limits the free expansion of the balloon.

The difficulties associated with latex balloons in the extradural space were not found when the balloons were inserted into the subarachnoid space, where a close correlation was seen
between the posterior fossa pressure and the supratentorial subarachnoid pressure. This agrees with the finding of Langfitt, Weinstein, Kassell, and Gagliardi (1964) and justifies the use of balloons in the supratentorial subarachnoid space as a means of measuring accurately cerebrospinal fluid pressure in this region.

Balloons having proved unsatisfactory in the extradural space, a metal capsule was designed for the implantation in this site and consistent repeatable results were obtained. In order to ensure patency, the capsule was flushed intermittently with 0.2 ml. saline, this being its internal volume. This metal capsule demonstrated that the pressure in the extradural space of experimental animals was identical with the subarachnoid pressure over a range of intracranial pressure up to 100 mmHg (Fig. 6). This implies that the dura mater fully transmits the subarachnoid pressure to the artificial extradural space. The results of Langfitt et al. (1964) would appear to be in line with this conclusion. These workers also investigated the stretching of dura mater and concluded that in vitro it is a virtually non-elastic material. Thus, our finding in animal experiments, that no pressure gradient existed, must imply that the dura mater is not fully distended in vivo. This non-distensibility of the dura mater accounts for the need to seal the cranial cavity completely.

Schettini and co-workers (1971)—using an extradural transducer—found that ‘brain surface pressure’ exceeded posterior fossa pressure in dogs, which apparently contradicts our findings and those of Langfitt et al. (1964). They postulated that there exists at the brain surface a tissue pressure which exceeds subarachnoid pressure, due to the presence of a gradient across the pia mater. They further believe that their extradural transducer, which incorporated a non-sensitive coplanar ring, pushed on to the brain through the intact dura mater, detected this ‘brain surface pressure’. As we are not comparing the same pressure, their results do not necessarily conflict with ours.

Turning now to the clinical results, and beginning with measurements made in the first six hours after operation for neurosurgical procedures, it was found that in approximately 60% of the patients the extradural capsule recorded pressures lower than the intraventricular pressure during the 12 minute observation period. A similar picture had been seen in dogs known to be decompressing around a poorly-sealed capsule (Fig. 8). In the case of patients, however, injection of methylene blue through the capsule into the extradural space did not result in staining of the scalp tissues. This suggests that decompression may have been occurring elsewhere, possibly through the mobile bone flap. In the remaining patients in whom extradural pressure exceeded the intraventricular pressure, the ventricular pressure was usually found to be low and associated with removal of substantial amounts of cerebrospinal fluid in the course of the surgical procedure. On the next day the slope of the regression line had moved closer to the line of identity, and this may have been due to sealing of the bone flap and expansion of the cerebrospinal fluid volume. By 48 hours after surgery the regression line was virtually parallel with the line of identity, and measurements of extradural pressure correlated well with intraventricular pressure readings but systematically over-read by 80–100 mm H2O for reasons that are still not clear. Possible explanations include tissue reaction to the capsule, accumulation of flushing fluid, and slow venous oozing. With regard to this last possibility, no clinically important amount of blood clot was discovered when the capsule was removed.

As mentioned previously, it was considered necessary to flush the capsule intermittently. This procedure produced small and transient elevations of extradural pressure immediately after insertion. With the progression of time after surgery, the rise in extradural pressure produced by the same volume of flushing fluid was higher and longer sustained. However, only an insignificant part of this was transmitted to the intraventricular pressure. This difference between extradural and intraventricular pressures after flushing can be ascribed to the non-distensibility of the dura mater already discussed and may indicate that the space in which the capsule is sited and the channels for absorbing the injected fluid are becoming obliterated by fibrin and organizing blood clot.

Previous evidence concerning the relationship between extradural pressure and intraventricular pressure in man is limited to a comment by Lundberg (1972), that: ‘extradural pressure
measurement may give adequate information about variations in ICP and, within certain limits, permit approximate quantitative assessment of the actual pressure level, and a figure of the comparison of the two pressures in one patient published by Nornes and Magnaes (1971). The results from this latter case showed extradural pressure to be higher than intraventricular pressure by a margin similar to that reported here.

From the results of this study it would seem that the use of a perforated metal capsule in the extradural space for the recording of intracranial pressure after neurosurgery has the advantage that the dura mater need not be breached, and thus avoids producing changes in intracerebral hydrodynamics and minimizes the risk of infection in the cerebrospinal fluid. In addition, a check on base-line drift of calibration can be achieved accurately and simply because the transducer is mounted externally on the head bandage. The animal studies indicate that, at least in the six hours after insertion of the device, the dura mater provides no barrier to the accurate transmission of pressure from the cerebrospinal fluid to the extradural space, providing the volume of fluid injected into the capsule is not excessive.

Observations from the clinical trial suggest that this system may be a valuable aid in clinical management 24 and 48 hours after operation. However, immediately after craniotomy, presumably because of continuing decompression of the extradural space, the method is a less reliable guide to intracranial pressure. In cases of closed head injury, where there is neither a mobile bone flap nor loss of cerebrospinal fluid, measurement of extradural pressure may give an accurate indication of intracranial pressure from the moment of capsule insertion, as was found in our animal experiments. A study of this extradural pressure measuring system in patients with head injury is in progress.

The authors wish to thank Dr. K. I. Gouda and the nursing staff of the Leeds General Infirmary and of Chapel Allerton Hospital for their assistance during the clinical trial. They also wish to thank Messrs. Michael Standen, Kahl Horner, James Allen, Michael Maher, Adrian Russell, and Brian Gough for technical assistance, and Mrs. M. Albers for secretarial help. During this study N.J.C. was in receipt of a Commonwealth Medical Fellowship sponsored by the British Council, and N.P.K. was in receipt of a grant from the Medical Research Council.

REFERENCES