Comparison of the intermediary metabolism of fatty acids in denervated and dystrophic murine skeletal muscle

J. JATO-RODRIGUEZ, C-R. LIANG, C-H. LIN, A. J. HUDSON¹, AND K. P. STRICKLAND

From the Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada

SYNOPSIS Certain aspects of lipid metabolism have been examined in denervated muscle from normal mice and in dystrophic muscle from mice of the Bar Harbor strain 129. A number of parameters show no change or similar changes. For example, the utilization of palmitate-[1-14C] and palmitoylcarnitine by mitochondria from denervated and dystrophic hind leg skeletal muscle showed parallel decreases in the oxidation of palmitate (30-42%) and palmitoylcarnitine (37-66%). A comparable study with acetylcarnitine showed a striking difference with no change evident in mitochondria from denervated muscle and 80-85% decrease in dystrophic muscle. The study of succinate dehydrogenase and the enzymes of β-oxidation in the above mitochondrial preparation showed similar findings except for acyl CoA dehydrogenase activity (an enzyme with a regulatory role in β-oxidation) which was significantly diminished (29%) in denervated muscle, whereas no change was observed in dystrophic muscle. The findings show a close parallel in a number of parameters but distinct differences were observed in denervated as compared with dystrophic muscles. It is unlikely that the muscular disorder in murine muscular dystrophy can be explained solely on the basis of denervation or the loss of a neural trophic factor.

A basic problem in the pathogenesis of muscular dystrophy is whether the disease has a myopathic or a neuromopathic origin. Because of the striking pathological alterations in dystrophic skeletal muscle and the absence of any significant change or reduction of anterior horn cells, the disorder might readily be regarded as myogenic (Papanetopoulos and Bradley, 1972). However, a number of studies have demonstrated a major role of nerve in the regulation of the metabolism and differentiation of muscle (Engel and Karpati, 1968; Guth et al., 1968) and, possibly, in the causation of muscular dystrophy (cf Nature, 1971). The most recent evidence in support of the latter possibility derives from the electrophysiological investigations of McComas and his colleagues (McComas et al., 1970; Sica and McComas, 1971; McComas et al., 1971a, b).

¹ Requests for reprints to A. J. Hudson at the above address.

(Accepted 21 May 1975.)

These authors provide a substantial basis for functional denervation and, in a 'neurogenic hypothesis' for muscular dystrophy, they propose a lack of a neural trophic factor, required for the survival and maintenance of muscle fibres, as the cause.

In this laboratory during the past several years a number of metabolic parameters, particularly relating to lipid metabolism, have been studied in muscular dystrophy of the mouse (Lin et al., 1969, 1970; Jato-Rodriguez et al., 1972a, 1974). Defects in the oxidation of palmitate (30-42% inhibition) (Lin et al., 1969, 1970) and of the acetyl group of acetylcarnitine (85% inhibition) (Jato-Rodriguez et al., 1972a) were demonstrated in homogenates and mitochondria isolated from dystrophic mouse. The findings that coenzyme A levels were reduced 60% in these mitochondria strongly suggested that these defects in oxidation are the result of a coenzyme
A deficiency (Jato-Rodriguez et al., 1972a) and not related to any deficiency in the enzymes of the Krebs cycle and the electron transport chain which were found to be normal (Jato-Rodriguez et al., 1972b). Preliminary studies indicate that mitochondria from dystrophic muscle may be more fragile and permeable than those from normal muscle (Liang et al., 1972). Should this be the case, it is possible that coenzyme A has 'leaked out' or been lost from mitochondria because of this abnormality. In experiments reported here attempts have been made to overcome the oxidation defects through the addition of coenzyme A.

In view of the evidence in favour of a 'neurogenic' hypothesis, it was decided to carry out the above type of study on denervated muscle of the hind legs of the mouse. It was reasoned that denervated muscle might in many ways act as a model for the dystrophic muscle, particularly if the prime defect is of neurogenic origin. In the experiments reported here a number of properties of denervated muscle, in particular relating to acetyl and fatty acyl oxidation, have been measured. These are compared with data previously obtained with dystrophic muscle and include measurement of (a) the enzymes monoo-aminoxidase, lipase and succinate dehydrogenase in whole muscle homogenates, (b) the oxidation of acetyl carnitine, palmitoyl carnitine and palmitate in mitochondria and (c) the enzymes succinate dehydrogenase, cytochrome oxidase and of β-oxidation present in mitochondria.

METHODS

ANIMAL AND TISSUE PREPARATIONS Normal and dystrophic mice were of the same strain (129 Rei) as used in the previous studies on dystrophic muscle (Lin et al., 1970; Jato-Rodriguez et al., 1972a). Both sciatic and femoral nerves were sectioned, in a bloodless operation under ether anaesthesia. At fixed times after the operation mice were decapitated and the muscles of the hind leg were removed, freed of connective tissue, and weighed. The isolated muscle was homogenized in 0.25 M sucrose containing 10 mM; Tris-HCl, 0.5 mM EDTA at pH 7.4. Portions of this homogenate were used for the determination of lipase, monoaminoxidase, cytochrome oxidase, and succinate dehydrogenase. Mitochondria were isolated as described by Lin et al. (1969, 1970).

ENZYME DETERMINATIONS Lipase was determined by the manometric method of Martin and Peers (1953) using tributyrin as substrate. Monoaminoxidase was estimated by the isotopic method of Wurtman and Axelrod (1963) and cytochrome oxidase by the manometric method described by Humoller et al. (1952) using ascorbate as substrate. Succinate dehydrogenase was determined as described by Alvarado-Rigual and Blancher (1970) using phenazine methosulphate and 2,6-dichlorophenolindophenol.

For the determination of the enzymes of β-oxidation, isolated mitochondria were pretreated with sodium deoxycholate (final concentration 1%) and then used in the assay. However, it was found that deoxycholate-treated mitochondria are not very active in the assay for acyl CoA dehydrogenase. For estimation of this enzyme the mitochondria were frozen and then thawed before being used. The different assays used and adapted to give maximal activities were as follows:

1. Acyl CoA dehydrogenase was determined as described by Ward and Fairbairn (1970) with the exception that palmitoyl-CoA was used as substrate (100 nmol) and the incubation was carried out in vacuo for one hour. The formazan formed was extracted and determined as reported by Green et al. (1954).

2. Hydroxy-fatty acyl CoA dehydrogenase was estimated by the method of Wakil et al. (1954) as modified by Weeks et al. (1969).

3. Enoyl CoA hydrase was assayed spectrophotometrically by the method of Stern et al. (1956).

4. Thiolase was assayed as described by Stern (1955).

OXIDATION OF SUBSTRATES AND RESPIRATORY CONTROL RATE (RCR) The oxidation of 1-[14C]palmitate and 1-[14C]acetylcarnitine were carried out in mitochondria as described by Lin et al. (1970) and Jato-Rodriguez et al. (1972a) with the exception that 2 mmol of 1-[14C]acetyl-l-carnitine was used. The oxidation of acetylcarnitine and palmitylcarnitine and the respiratory control ratio (RCR) were carried out using the oxygen electrode. Oxygen consumption was measured polarographically using an Interscience oxygen analyser (Interscience XWB-3 fitted with oxygen electrode, Interscience YSI Model 5331 fitted to a Varicord Linear/Log recorder, Model 43, Photovolt Corp. New York). The reaction cell, volume of 1 ml, was maintained at 30°C using a circulating water bath (Haake, West Germany). For each measurement the following substances were added in sequence: buffer solution (KCl, 0.15 M; K2HPO4, 0.03 M; Tris-HCl, 0.025 M; EDTA, 0.002 M; sucrose, 0.045 M; and MgCl2, 0.005 M...
all adjusted to pH 7.4), substrate; mitochondria (0.3–0.5 mg) protein and ADP (0.245 μmol) added at intervals. With each estimation, after the respiration had returned to a steady state (state 4), a known amount of ADP was added to initiate state 3 respiration. The oxygen uptake, ADP:0 ratio, and RCR were estimated as described by Chance and Williams (1956).

ESTIMATION OF PROTEIN Protein was estimated by the method of Lowry et al. (1951).

MATERIALS 1-[14C] palmitate (50 mCi/μmol) was obtained from Amersham/Searle (Arlington Heights, Ill.) and prepared for utilization as described elsewhere (Lin et al., 1970). 1-[14C]acetyl-l-carnitine was prepared as detailed in a previous publication (Jato-Rodriguez et al., 1972a). Acetyl-l-carnitine and palmityl-l-carnitine were kindly provided by Otsuka Pharmaceuticals (Japan). All other chemicals used were of the highest purity available commercially.

RESULTS

In this investigation, some extension has been made of earlier studies relating to acetyl- and palmityl- group oxidation by mitochondria from normal and dystrophic muscle. The data in Table I confirm the severe impairment observed for acetylcarnitine oxidation (80% inhibited in Table I compared with 85% reported by Jato-Rodriguez et al., 1972a). The addition of coenzyme A (55 μM) to mitochondria isolated from dystrophic muscle resulted in a partial restoration (16% increase with five animals) of their ability to oxidize the acetyl group of acetylcarnitine. In comparison with the effect on mitochondria from normal muscle (where a 6% inhibition is observed), the stimulation of dystrophic mitochondria by CoA is highly significant (P < 0.01). Measurement of the oxidation of palmitylcarnitine using the oxygen

![Graph](https://example.com/graph.png)

FIG. 1 Changes in lipase, monoaminoxidase, succinate dehydrogenase, and cytochrome oxidase of homogenates of hind leg muscle of mice undergoing atrophy after denervation.

<table>
<thead>
<tr>
<th>Type of animal</th>
<th>Oxidation of 1-[14C]-acetylcarnitine*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No CoA</td>
</tr>
<tr>
<td></td>
<td>(nmol/mg protein)</td>
</tr>
<tr>
<td>Dystrophic</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>242.0</td>
</tr>
<tr>
<td>2</td>
<td>48.2</td>
</tr>
<tr>
<td>3</td>
<td>69.6</td>
</tr>
<tr>
<td>4</td>
<td>97.4</td>
</tr>
<tr>
<td>Average</td>
<td>154.9</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>562.0</td>
</tr>
<tr>
<td>2</td>
<td>652.0</td>
</tr>
<tr>
<td>3</td>
<td>513.5</td>
</tr>
<tr>
<td>4</td>
<td>461.6</td>
</tr>
<tr>
<td>5</td>
<td>330.1</td>
</tr>
<tr>
<td>Average</td>
<td>492.4</td>
</tr>
</tbody>
</table>

* Incubation conditions as described in the Methods section with 20 000 dpm 1-[14C]-acetylcarnitine added to each flask.
† Average percentages relative to sample with no CoA added ± SEM. The probability P < 0.01 that the added CoA is equally affecting the two mitochondrial preparations.
electrode has confirmed that mitochondria from dystrophic muscle are impaired in their ability to oxidize palmityl groups (for 0.3 mmol palmityl-l-carnitine values were obtained of 15.67 ± 2.97 for four normal animals and 5.07 ± 1.13 for three dystrophic animals expressed as nmol O_2 utilized per min per mg mitochondrial protein; $P < 0.05$). This agrees with our earlier studies on palmitate-l-$[14^C]$ oxidation where a highly significant inhibition of oxidation (42%) was observed in mitochondria from dystrophic muscle (Lin et al., 1970).

The weight of leg muscle after denervation fell to 60% of the control value by the third week and showed no further change by the eighth week. Figure 1 shows the activities of four enzymes in homogenates of denervated muscle as compared with the contralateral control. A large increase in activity is noted for lipase which occurs quite rapidly over the first two weeks. By two weeks the level of increase begins to plateau at 250%. The increase observed with mono-aminoxidase is small (25%) and becomes manifest only after two weeks of denervation. Succinate dehydrogenase and cytochrome oxidase do not show any change in the muscle for up to eight weeks after denervation. Neither the respiratory control ratio (RCR) nor the succinate dehydrogenase activity altered significantly over eight weeks of denervation. Since no changes were observed in succinate dehydrogenase (homogenate or mitochondria), it can be

![Figure 2](image-url)
FIG. 2 Changes in the utilization of acetylcarnitine, palmityl-carnitine, palmitate-l-$[14^C]$ by mitochondria isolated from the hind leg muscles of mice at various times after denervation.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Enzymatic activity</th>
<th>Normal</th>
<th>Dystrophic</th>
<th>Control</th>
<th>Denervated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyl CoA dehydrogenase*</td>
<td>4.38 ± 0.50</td>
<td>4.63 ± 0.50</td>
<td>4.58 ± 0.22</td>
<td>3.23 ± 0.20</td>
<td></td>
</tr>
<tr>
<td>Hydroxyacyl CoA dehydrogenase†</td>
<td>561 ± 42</td>
<td>481 ± 47</td>
<td>532 ± 31</td>
<td>443 ± 31</td>
<td></td>
</tr>
<tr>
<td>Enoyl CoA hydrolase†</td>
<td>601 ± 51</td>
<td>470 ± 38</td>
<td>600 ± 48</td>
<td>433 ± 26</td>
<td></td>
</tr>
<tr>
<td>Thiolase†</td>
<td>98 ± 9</td>
<td>101 ± 11</td>
<td>109 ± 7</td>
<td>95 ± 7</td>
<td></td>
</tr>
</tbody>
</table>

* Activity expressed in nmol triphenyltetrazolium reduced to formazan/min/mg protein.
† Activity expressed in nmol substrate metabolized/min/mg protein.
concluded that the mitochondrial content of muscle undergoing atrophy after denervation does not change when expressed as mg mitochondrial protein per gram muscle—that is, as the muscle atrophies, there is a parallel decrease in mitochondria.

The effect of denervation on the ability of mitochondria to oxidize acetylcarnitine, palmitylcarnitine, and 1-[14C]palmitate is shown in Fig. 2. No alteration is observed in respect of acetylcarnitine oxidation, which contrasts with the observation for dystrophic muscle where there is a highly significant reduction (80–85%) based on release of 14CO2 from 1-[14C]-acytelycarnitine and 36% using the oxygen electrode. With both 1-[14C]palmitate and palmitylcarnitine, fairly rapid decreases in oxidation are observed for two weeks after denervation that plateau at levels of 30% and 37%, respectively, below the normal values.

An explanation for the decreases in palmitate or palmitylcarnitine oxidation observed in both dystrophic and denervated muscle was sought in an examination of the enzymes of β-oxidation, since the enzymes of the Krebs’ cycle and the electron transport chain were normal (Jato-Rodriguez et al., 1972b). The three enzymes, hydroxyacyl CoA dehydrogenase, enoyl CoA hydrolase, and thiolase, showed no alteration in activity in mitochondria from either denervated or dystrophic muscle (Table 2). For acyl CoA dehydrogenase, the rate limiting enzyme, it was observed that enzyme activity is reduced 29% two weeks after denervation, whereas there is no change in the dystrophic muscle. This decrease is highly significant.

DISCUSSION

This investigation extends our earlier work on lipid metabolism in dystrophic muscle to a consideration of what these changes have in common with denervated muscle. Should the changes in denervated muscle parallel those in muscular dystrophy, then substantial support would be provided for a neurogenic origin for the disease. Summarized in Table 3 are the results described in this paper compared with those previously obtained from dystrophic muscle. Many similarities were observed which include a number of activities showing no change—for example, succinate dehydrogenase, cytochrome oxidase, and three of the four enzyme activities of β-oxidation—and a number of activities showing either increases—for example, lipase and monoaminooxidase—or decreases—palmitate and palmitylcarnitine oxidation. However, examination of the defect in palmityl group

TABLE 3

<table>
<thead>
<tr>
<th>Property measured</th>
<th>Denervated (after 2 weeks)</th>
<th>Dystrophic (% change)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipase</td>
<td>+250</td>
<td>+125</td>
<td>Jato-Rodriguez et al. (1974)</td>
</tr>
<tr>
<td>Monoaminooxidase</td>
<td>+25</td>
<td>+50</td>
<td>This paper</td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>NC</td>
<td>NC</td>
<td>Jato-Rodriguez et al. (1972b)</td>
</tr>
<tr>
<td>Cytochrome oxidase</td>
<td>NC</td>
<td>NC</td>
<td>Jato-Rodriguez et al. (1972b)</td>
</tr>
<tr>
<td>Utilization of substrates by isolated mitochondria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetyl carnitine</td>
<td>NC</td>
<td>−37</td>
<td>Jato-Rodriguez et al. (1972a)</td>
</tr>
<tr>
<td>Palmityl carnitine</td>
<td>−30</td>
<td>−42</td>
<td>Lin et al. (1970)</td>
</tr>
<tr>
<td>Palmitate-1[14C]</td>
<td>−30</td>
<td>−42</td>
<td>Lin et al. (1970)</td>
</tr>
<tr>
<td>Enzyme activities in mitochondria</td>
<td></td>
<td></td>
<td>Jato-Rodriguez et al. (1974)</td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>NC</td>
<td>NC</td>
<td>This paper</td>
</tr>
<tr>
<td>Enzymes of β-oxidation</td>
<td></td>
<td></td>
<td>This paper</td>
</tr>
<tr>
<td>Acyl CoA dehydrogenase</td>
<td>−29</td>
<td>NC</td>
<td>This paper</td>
</tr>
<tr>
<td>Hydroxyacyl CoA dehydrogenase</td>
<td>NC</td>
<td>NC</td>
<td>This paper</td>
</tr>
<tr>
<td>Enoyl CoA hydrolase</td>
<td>NC</td>
<td>NC</td>
<td>This paper</td>
</tr>
<tr>
<td>Thiolase</td>
<td>NC</td>
<td>NC</td>
<td>This paper</td>
</tr>
</tbody>
</table>

* A plus denotes an increase, a minus denotes a decrease, and NC denotes no change.
that is, palmitate and palmitylcarnitine—
oxidation and acetylcarnitine oxidation in mi-
tochondria revealed two striking differences
between denervated and dystrophic muscle.
These were (1) a reduction in the activity of acyl
CoA dehydrogenase (a regulatory enzyme of
β-oxidation) in denervated as opposed to no
change for dystrophic muscle mitochondria and
(2) no change in acetylcarnitine oxidation in
mitochondria isolated from denervated muscle as
compared with a large reduction (up to 80%) in
dystrophic muscle.

Since acyl CoA dehydrogenase exhibited a
much lower activity than the other three en-
zymes of β-oxidation (Table 2), it is considered to
be the rate limiting step for β-oxidation and any
reduction in activity in this enzyme could be
expected to have a direct effect on the overall
oxidation of acyl groups. On this basis it is
reasonable to propose that the significant reduc-
tion in acyl CoA dehydrogenase activity ob-
served in mitochondria from denervated muscle
is sufficient to account for the observed im-
pairment in oxidation of palmitate and pal-
mitoylcarnitine.

Evidence from our earlier studies (Jato-
Rodriguez et al., 1972a) strongly supports the
view that the impairments in oxidation of acetyl-
carnitine, palmitate, and palmitylcarnitine
observed in mitochondria from dystrophic
muscle may have a common explanation which
is related to the availability of coenzyme A. In a
study primarily concerned with an examination
of the nature of the defect in oxidation of acetyl-
carnitine in mitochondria from dystrophic
muscle, it was found that the coenzyme A content
of these mitochondria was reduced by 60%. On
the assumption that the levels of coenzyme A
are critical and may profoundly influence acetyl
group oxidation, the above reduction appeared
to be just adequate to account for the impair-
ments noted in the oxidation of acetyl and pal-
mityl groups. Further support for this
explanation and for the possibility that the co-
enzyme A deficiency observed may be due to
abnormal permeabilities of the mitochondria is
provided by the experiments in which coenzyme
A was added to mitochondria isolated from
normal and dystrophic muscle (Table 1). The net
stimulation of 22%—that is, a 16% stimulation
for mitochondria from dystrophic muscle com-
bined with a 6% inhibition for mitochondria
from normal muscle—by coenzyme A observed
for mitochondria from dystrophic muscle com-
pared with normal muscle strongly suggests an
increased permeability to coenzyme A which, if
present in mitochondria in situ, might be great
enough to account for the 60% loss in coenzyme
A content.

In conclusion, it is evident that there are quite
a number of biochemical similarities between
dystrophic and denervated muscle and such
changes are consistent with the hypothesis that
murine muscular dystrophy has a neurogenic
origin. However, at least two and possibly three
of the properties studied show differences
between dystrophic and denervated muscle and,
therefore, it is unlikely that the dystrophic pro-
cess can be explained solely on a basis of den-
vation or the loss of a neural trophic factor.

The authors are grateful to Miss K. Ponath for her
skilful assistance. This work was supported by the
Muscular Dystrophy Association of Canada.

REFERENCES
Respiration and oxidative phosphorylation by mi-
tochondria of red and white skeletal muscle Canadian Journal
of Biochemistry, 48, 27–32.
Chance, B., and Williams, G. R. (1956). The respiratory chain
and oxidative phosphorylation. Advances in Enzymology,
17, 65–134.
muscle maturation following neonatal neonotomy. Devel-
opmental Biology, 17, 713–723.
fatty acid oxidizing system of animal tissues. 2. Butyryl
coenzyme A dehydrogenase. Journal of Biological Chem-
cross-reinnervation on some chemical properties of red and
white muscles of rat and cat. Experimental Neurology, 12,
52–69.
Cytochrome oxidase activity in muscle following neuro-
(1972b). Activities of enzymes of the citric acid cycle and
electron transport chains in skeletal muscle of normal and
dystrophic mice (strain 129). Enzyme, 13, 286–292.
(1974). Triglyceride metabolism in skeletal muscle from
normal and dystrophic mice. Biochimica Biophysica Acta,
348, 1–13.
land, K. P. (1972a). Acetyl-l-14C-l-carnitine oxidation,
carnitine acetyl transferase activity, and CoA content in

