Book reviews

Perhaps the greatest surprise to a British reader is to find that a section entitled Disorders of Movement is yet another metabolic section with clinical neurophysiology reduced to bare essentials. Lower motor neurone physiology is largely from laboratory animals, and the introduction to its disorders has 794 references with 11 pages on hypothetical (sic) lesions with portmanteau-linguistic (Kingengelopathies).

Diabetic neuropathy is well described, though many would consider that it underestimates the axonal factor, and the section on leprosy is authoritative. The chapter on myasthenia gravis is comprehensive, but a reproduced table omits the association with epilepsy which now appears to be explicable. Congenital and dystrophic myopathies are well reviewed but need a Sparafucile (indexed forsooth).

Neuroendocrine and autonomic disorders are followed by interesting essays on pain and headache, to complete a monumental work. Apparently higher cerebral functions are not scientific. Was it worth it? Well yes, for 1977; the question is, what is its half life? Nonetheless it would be less than generous to close without congratulating the authors on an enormous job well done.

J. A. SIMPSON

There have been striking changes of emphasis since the Association last reviewed the hypothalamus in 1939. From being largely speculative, the hormonal aspects are now well established and a proper subject for detailed biochemistry. Neural control of the anterior pituitary, tentatively discussed at that time, is now the major problem for discussion, and the hypothalamic-portal blood system, then unknown, is now so well described as not to require a special chapter. Undoubtedly the most exciting advance is the recognition of endogenous morphine-like peptides, endorphins, and enkephalins with their promise for better understanding of the physiology of pain perception.

Increasing evidence of interaction between the hypothalamus and the pineal gland justifies inclusion of an interesting account of the latter and its role in circadian rhythms.

This book is an excellent review of modern ideas about an important and somewhat neglected part of the brain. Not least of its value is the maintained effort to show the clinical relevance of basic studies. I wish I could be around to read the report of the next meeting on this subject. Perhaps I shall, because it is certain to be a much shorter interval next time.

J. A. SIMPSON

The hippocampus is studied today with a wider range of technique than probably any other structure in the nervous system. A symposium on its function is an impressive occasion: anatomists, physiologists, neurochemists, and psychologists interact to a remarkable extent. For all this, the function of the system remains very obscure. The field is notorious for the different interpretations held among different groups. These are brought out forcefully in this book through fully documented discussions which were led effectively by the Chairman, L. Weiskrantz. The book will be a help to many who work in this field, chiefly because of these illuminating discussions.

The emphasis is on the relation of the hippocampus to the septum, a principal interface with the rest of the brain. Perhaps the most useful articles are those which attempt reviews, including the anatomy (Lynch, Swanson), the transmitters (Storm-Mathisen), and the impairment of memory with hippocampal damage (Weiskrantz). Unfortunately there is no attempt to review the physiology of septo-hippocampal influences or the generation of theta rhythm, both centrally important topics. Among the articles on more specific research is a valuable summary by Vinogradova of studies, mostly originally published in Russian, of sensory responses.

It is variously argued that the system may be a map, a comparator, a familiarity discriminator, concerned with motor activity, behavioural inhibition, and the anticipation of food. At least one of the apparent conflicts may fortunately be disappearing, however, as experiments now reveal similarities of the memory loss with hippocampal damage in man and in other species.

A. R. GARDNER-MEDWIN

If a theory of self-awareness is to have general acceptability, it must be compatible with neurobiology as well as with the rationalisations of moral philosophy. This unique book is in three parts. In part 1, Popper—a philosopher and religious agnostic—analyses the philosophical issues of the mind-brain relationship (dualist interactionism versus parallelism or epiphenomenon), and in part 2, Eccles—a neurobiologist and firm believer in God and the supernatural—reviews the function of the human brain, with the recent evidence from experimental psychology and from the "split-brain" subjects. They both opt for interactionism. Part 3, based on 12 recorded conversations, is a dialogue which confirms the areas of agreement but highlights conflicting opinions.

The terminology is a little unfamil iar and often makes the reader stop to consider the meaning of a straightforward sentence. For instance they use appropriately, the terms "consciousness" and "self-consciousness", the former being the result of arousal systems, the latter as "self-awareness" which they consider to be uniquely human. Popper faces the evolutionary problem by proposing that the evolution of consciousness and of conscious intelligent effort, and later of language and reasoning, should be considered teleologically, but the evolutionary pressure for natural selection of a faculty with potential but no immediate survival value is not satisfactorily accounted for, unless evolution is purposive.

I also found it necessary to memorise their three-world terminology in order to follow the arguments. In fact, the conclusions of the debate depend on its validity. World 1 is the world of physical objects, including the CNS. World 2 is the world of subjective experience and includes both "animal consciousness" and "self-consciousness", part of which is an awareness of death as an inevitable future state. World 3 is the products of