Book reviews and letters

and should be required reading for all psychiatrists.

J. A. G. WATT

Developmental Dysphasia Edited by Maria A. Wyke. (Pp. 179; £7.80.) Academic Press: London. 1978. The child who is slow to talk makes his parents anxious and induces a sense of frustration in his doctors and teachers. Reassurance and encouragement are fortunately sufficient in most cases. But in those instances where there is a true dysphasia, every stage of the child's management from diagnosis to treatment is difficult. For the doctor it is often made more difficult by the scarcely penetrable mazes of jargon used by some aphasiologists. Zangwill's introduction to this study is a model of comprehensibility, and the other authors are generally successful in conveying their meaning without recourse to idiosyncratic terminology.

The closely allied condition, developmental dyslexia, has gone through various phases of acceptability to gain neurological respectability. Perhaps this short and essentially practical book will do the same for developmental dysphasia.

IVAN T. DRAPER

Human Neuropsychology By Henry Hecaen and Martin L. Albert. (Pp. 509; illustrated; £16.20.) John Wiley and Sons: Chichester. 1978. This relatively small book has 10 chapters on the major topics in neuropsychology relevant to the neurologist's practice. Each one is broken up into short, easily accessible sections so that a brief reference allows one to grasp the essentials of that subject with an outline of anatomy, clinical considerations, and animal experiments, and a generous list of references. In the preface the authors acknowledge a lack of comprehensiveness—for instance, there is no section on dementia—saying that its scope reflects their particular interests. This alone is a monument to their industry. Unlike many books on neuropsychology, this one is easily read and there is a commendable absence of specialised language.

IVAN T. DRAPER

Letters

F discharge method in measurement of proximal conduction times

SIR.—In a recent report on the characteristics of the F response Yates and Brown (1979) concluded that "caution should be exercised before the F discharge is accepted as a method for measuring proximal conduction times in human motor nerves." This statement, based on only one partially examined observation of the above authors and a theoretical argument, is unjustified. Furthermore, the literature review in their discussion is limited to those reports which favour their conclusion.

Observation—"Trains of 100 to 200 stimuli result in F discharges from less than one half of motor units", thus they might not excite the motor units antidromically with the shortest conduction time as the method requires. This observation is of value only when the F wave motor nerve conduction velocity (MNCV) estimations are based on "less than 10 stimuli" as in some of the reports mentioned by the above authors. Reports on F wave MNCV measurements based on more than 20 to 100 F waves, which is our practice, are not cited (Panayiotopoulos et al., 1977; Panayiotopoulos and Scarpalezos, 1977).

It has been shown that one to three out of 20 F waves have the shortest latency. Therefore, accurate F wave MNCV measurements are achievable provided that adequate numbers of F waves are used (Panayiotopoulos et al., 1977, see also references in Panayiotopoulos, 1978). Moreover, the argument of the authors that "if the stimulus trains are too long, the test may be too uncomfortable and require too much time to be practical" does not prove to be justified upon closer examination. One hundred stimuli, for example, given at one stimulus per two seconds, require 3.5 minutes and are much less uncomfortable than the universally applied multistimulus test for myasthenia. It has also been shown that the MNCV in the distal segment of the nerves is practically the same for both the M and F wave methods (Panayiotopoulos et al., 1977; Kimura, 1978; Panayiotopoulos, 1979).

Theoretical argument “All motor units should have a more or less uniformly short central delay in healthy and diseased.” This has recently been dealt with (Kimura, 1978; Panayiotopoulos, 1978) in view of the same argument raised by Young and Shahani (1978). I should like to add in this letter that the margin of error introduced by theoretically possible differences in the central delay (which is the time required for the antidromic activation of motor neurones) would be negligible particularly in F wave MNCV measurements of the peripheral nerves of the lower limbs. This is better understood in the following example: a 2 ms difference in the central delay, which is nearly impossible (Kimura, 1978) would introduce a 6 m/s difference in MNCV estimations of the tibial nerve in a subject with an L1-knee distance of 700 mm, F wave and M response latency of 38 and 9 ms respectively, from stimulation at the knee. However, errors of this order are quite common in the classical M response method (see Panayiotopoulos, 1978): a difference of 0.5 ms between onset of M response at