Short Report

Ratio between the amplitude of sensory evoked potentials at the wrist in both hands of left-handed subjects

A CRUZ MARTÍNEZ, M C PÉREZ CONDE, F DEL CAMPO, P MINGO AND M T FERRER.

From the Sección de Electromiografía, Servicio de Neurofisiología Clínica, Ciudad Sanitaria La Paz, Madrid.

SUMMARY Maximum sensory conduction velocity, duration and amplitude of the sensory evoked potentials at the wrist on stimulating digits 1, 2, 3 and 5, were determined bilaterally in 21 left-handed subjects with an age range from 6 to 47 years. The amplitude of the sensory evoked potential at the wrist was larger in the right hand. This asymmetry is the reverse of the one previously observed in right-handed infants and adults. It could be physiological and suggests a difference in density of sensory innervation between the two hands. Asymmetry of sensory innervation can be helpful in the study of hand dominance.

In the study of the ratio between the amplitude of sensory evoked potential (SEP) at the wrist on stimulating different fingers, it had been concluded that the larger amplitude corresponds to digit 1 and the smallest to digit 5. The ratio between the amplitude of different fingers varies according to the age of the subject. Variations in the normal amplitude ratio can be applied to the topographic diagnosis of postganglionic radicular and brachial plexus avulsions, if a fixed segmental sensory innervation of the hand is previously accepted.

In right-handed infants and adults, the amplitude of the SEP was larger in the left hand than in the right one. These results suggest an asymmetry of sensory innervation of the hands which could be physiological. In this paper we determine the ratio between the amplitude of the SEP at the wrist on stimulating different fingers, and compare the amplitude of the SEP between both hands in healthy left-handed subjects.

Subjects and method

Twenty-one healthy left-handed subjects, 9 women and 12 men, whose ages ranged from 6 to 47 years, with a mean age of 21.8 years, were studied. Left-handed suppressed cases were not included in this study. None of the subjects had signs or symptoms of neuromuscular disease. Right hemisphere dominance was confirmed.

The maximum sensory conduction velocity (SCV) from digit to wrist segment, and amplitude and duration of the SEP at the wrist were bilaterally studied stimulating digits 1, 2, 3 and 5. The ratio between the amplitudes of the SEP 2:1, 3:1, 5:1, 5:2 and 5:3 was determined in both hands. Amplitudes of the SEP in both hands were compared.

The details about stimulating and recording technique are described in previous papers.

Results

The first digit had the largest amplitude, followed by digits 3, 2 and 5. (Table and figure.) The ratio between the amplitude of the different fingers is similar in both hands, and also similar to the values previously calculated in right-handed subjects.

The maximum SCV, and duration and amplitude of the SEP were compared in both hands. In most of the left-handed subjects of this series, the amplitude of the SEP was larger in the right hand.

Statistical differences of the mean values of the amplitude of the SEP in left-handed subjects was significant for digits 1 and 2 (Table).
In previously published papers, we have concluded that in right-handed infants and adults, the amplitude of the SEP was larger in the non-dominant hand. The figure summarises the different results in right-handed and left-handed individuals.

Whereas the amplitudes of the SEP were larger in the right hand, the maximum SCV from digit to wrist and the duration of the SEP at the wrist were similar in both hands, without showing any significant difference (Table).

Discussion

In another paper, the value of the ratio between the amplitude of the SEP at the wrist on stimulating different fingers, for a more precise topographic location in radicular or brachial plexus is commented. So, we assume that the SEP amplitude is a function of the number of nerve fibres activated by electrical stimuli. The amplitude of the SEP can thus indicate the density of the sensory innervation of each finger. In left-handed subjects the largest sensory innervation corresponds to digit 1, followed by digits 3, 2, and 5. The results are the same as those previously published in right-handed infants and adults and are in accordance with the cortical representation of each finger. Since the results are the same in infants as in adults, and in right- as in left-handed individuals, it is possible to conclude that the difference in amplitude of the SEP from the different fingers expresses the density of the sensory innervation for each finger, and that it is physiological.

Different studies in right-handed subjects have suggested that the density of the sensory innervation differs in both hands. The amplitude of the SEP is larger in the left hand of right-handed individuals. Differences of amplitude are more significant in adults than in infants. This asymmetry of sensory innervation can be well compared with the results in other papers where the discrimination of Braille configurations was better performed by the left hand of right-handed children and adults. Left hand superiority is only verified over 6 or 10 years of age.

In left-handed subjects we have now observed that the asymmetry of the amplitude of the SEP between both hands is the reverse of the one determined in right-handed individuals. The amplitude

Table

<table>
<thead>
<tr>
<th>Digit</th>
<th>Parameter</th>
<th>Right</th>
<th>Left</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCV (ms)</td>
<td>52.1±3.38</td>
<td>50.2±5.20</td>
<td>>0.10</td>
</tr>
<tr>
<td></td>
<td>Duration (ms)</td>
<td>1.00±0.115</td>
<td>1.015±0.113</td>
<td>>0.60</td>
</tr>
<tr>
<td>2</td>
<td>Amplitude (μV)</td>
<td>49.04±16.45</td>
<td>39.80±13.29</td>
<td>>0.05</td>
</tr>
<tr>
<td>3</td>
<td>SCV (ms)</td>
<td>58.35±5.34</td>
<td>57.38±6.65</td>
<td>>0.60</td>
</tr>
<tr>
<td></td>
<td>Duration (ms)</td>
<td>1.14±0.146</td>
<td>1.16±0.184</td>
<td>>0.40</td>
</tr>
<tr>
<td>4</td>
<td>Amplitude (μV)</td>
<td>22.92±7.81</td>
<td>18.28±5.56</td>
<td>>0.05</td>
</tr>
<tr>
<td>5</td>
<td>SCV (ms)</td>
<td>57.16±4.83</td>
<td>56.35±6.98</td>
<td>>0.70</td>
</tr>
<tr>
<td></td>
<td>Duration (ms)</td>
<td>1.05±0.111</td>
<td>1.05±0.131</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Amplitude (μV)</td>
<td>25.97±10.66</td>
<td>21.93±6.96</td>
<td>>0.10</td>
</tr>
<tr>
<td></td>
<td>SCV (ms)</td>
<td>54.64±6.35</td>
<td>55.58±8.31</td>
<td>>0.70</td>
</tr>
<tr>
<td></td>
<td>Duration (ms)</td>
<td>1.07±0.117</td>
<td>1.05±0.131</td>
<td><0.50</td>
</tr>
<tr>
<td></td>
<td>Amplitude (μV)</td>
<td>13.73±4.20</td>
<td>11.71±3.91</td>
<td>>0.10</td>
</tr>
</tbody>
</table>
of the SEP and, hence the density of sensory innervation, is larger in the right hand of left-handed subjects. As in previous publications, the maximum SCV from digit to wrist and the duration of the SEP at the wrist are not significantly different between both hands. The distances between stimulation and recording points, the circumference of the wrist (14.2 cms) and the temperature (33-0°C and 33-2°C) were the same in both hands as well. Thus, the variations due to the technique are not the explanation for the asymmetry of the amplitude of the SEP. Hence, this study in left-handed subjects can support the hypotheses\(^1\) that the asymmetry of sensory innervation between the hands is physiological, but is reversed in right- and left-handed subjects.

We think that the results in right-handed individuals\(^1\) and the conclusions of this paper provide a more precise information than the conventional electromyographic studies. If the amplitude of the SEP at the wrist is larger in the right hand, this parameter can be complementary data to determine that the subject is left-handed. More detailed studies might support this hypothesis.

References

3 Cruz Martín A, Ferrer MT, Bernacer M. Estudio de la amplitud de los potenciales sensitivos evocados de los nervios mediano y cubital en el niño. Rehabilitación 1975; 9:169–82.

