Attempted rapid elbow flexion movements in patients with athetosis

MARK HALLETT,* NORBERTO ALVAREZ†

From the Section of Neurology, Department of Medicine, Brigham and Women's Hospital* and the Neurology-Seizure Control Program, Wrentham State School-Children's Hospital Medical Center† and the Department of Neurology,**† Harvard Medical School, Boston, USA

SUMMARY Voluntary rapid elbow flexion movements were studied in 14 patients with athetosis on the basis of cerebral palsy. When the movement was attempted with one arm, other muscles inappropriate for the task, such as muscles in the opposite limb, were also activated. EMG activity of the biceps and triceps was analysed in detail, and the patterns seen in the different patients were divided into six groups: (1) The normal “ballistic” triphasic pattern, with bursts of normal duration, alternating in biceps and triceps, but the triceps might be activated first, causing the limb to extend rather than flex, (2) The triphasic pattern, with bursts of long duration, (3) Repetitive cycles of the triphasic pattern with particularly long antagonist bursts, apparently limiting the movement in each cycle, (4) Long bursts synchronous in agonist and antagonist muscles, (5) Continuous activity of the agonist, with reduction in activity of the antagonist, (6) Failure to be able to do the task. The pathophysiology of athetosis is that voluntary movement is characterised by excessive muscular activity, most prominently in inappropriate muscles, both extraneous to the task and directly antagonistic.

The term athetosis means “without fixed position” and brings to mind a type of involuntary movement characterised by “two or more abnormalities in posture, between which there is intermittent change or fluctuation.” A critically important disability, however, for the patient with athetosis is the derangement of voluntary movement. With attempts at voluntary movement the athetosis seems to increase in intensity, not only in the body part attempting the movement but in other body parts as well. As Denny-Brown described it, “the willed effort of the patient results first in increase in the dystonia associated with the athetosis, often of antagonists of the movement that is attempted.”

In an effort to learn more about the physiology of athetoid voluntary movement, we have studied the electromyographic patterns associated with attempted rapid elbow flexion movements in patients with athetosis associated with cerebral palsy. The normal electromyographic pattern of the ballistic movement and its physiology have been well studied. The initial part of the electromyographic pattern is “triphasic” with a discrete burst of activity in biceps, followed by a burst in triceps while the biceps is silent, and followed by return of activity in biceps, often in the form of a burst. The first biceps burst sets the limb in motion; its duration is fixed between 50-100 ms and its amplitude is modulated for different movements, such as movements of different distance. The first triceps burst helps to stop the limb at the end-point of movement, and its duration is similarly fixed between 50–100 ms.

Methods

The 14 patients were all from the Wrentham State School (Table). There were nine men and five women ranging in age from 25–68 yr and all suffered with athetosis due to cerebral injury early in life. Most patients had borderline intelligence and all understood the task quite clearly and gave informed consent to participate. Neurological examination of the arm studied was quantified in the following way. Strength of biceps and triceps was assessed on the 0-5 scale described in Aids to the Examination of the Peripheral...
The patients attempted to make voluntary movements the amount of athetosis increased. This physiological process of excessive generalisation of the motor command can be called "overflow".

The patterns of activation of the biceps and triceps (in the voluntarily innervated arm) divided the patients into six groups, called A–F in the Table.

The first pattern (group A) was essentially normal with bursts of EMG activity of normal duration occurring alternately in the antagonist muscles (fig 2). Occasionally, following the verbal command to flex the elbow, the elbow would rapidly extend. This behaviour came as a surprise to the patient who could not explain it.

The second pattern (group B) was characterised by maintained appropriate reciprocal activity in biceps and triceps, but with durations of bursts, particularly the first biceps burst, longer than the normal upper limit of normal of 100 ms (fig 3). On some trials the elbow would unexpectedly extend rather than flex just as in the first group. Two of the three patients (B1 and B3) frequently produced a
bend of activity in the triceps before the first burst in biceps. This triceps burst caused the elbow to extend slightly before the main flexion movement.

The third pattern (group C), represented by only one patient, was characterised by rhythmic bursts of EMG activity at about 2 Hz (fig 4). For this group and subsequent groups, although the patients were clearly trying to make rapid movements, the movements were in fact slow and cannot be considered "ballistic". For this patient the movement took 1–2 s to accomplish. Each "beat" of the rhythmic tremor produced a small increment of flexion. Biceps activity would begin and in approximately 100 ms triceps activity would start, overlapping with the end of the biceps burst. The triceps burst was usually longer in duration than the biceps burst, but at least equal to it, and the functional consequence seemed to be that the movement was halted.

The fourth pattern (group D) was characterised...
by prolonged synchronous activity in the antagonist muscles (figs 5 and 6). This co-contraction activity might begin in the biceps (fig 5A) or the triceps (fig 5B). One patient (D2, fig 6) moved only very slowly and frequently exhibited a 2 Hz tremor on top of the co-contraction pattern. The EMG activity of the tremor component often appeared completely synchronous, but could exhibit the pattern of group C where the biceps would begin slightly earlier.

The fifth pattern (group E) was seen in two patients who had considerable EMG activity at rest. Movements were difficult to make, and the patients seemed to be struggling to start the movement and carry it to completion. Flexion was not accomplished by increasing biceps activity, but by reduction in triceps activity (fig 7). With reduction in triceps activity, flexion could be accomplished by maintained or even slightly reduced biceps activity.

The sixth pattern (group F) was long bursts of co-contraction activity in the two antagonist muscles with inability to accomplish the task. The arm moved almost randomly without any real control.

Discussion

The electromyographic patterns associated with athetoid movements were established some time ago to be characterised by rather prolonged bursts of activity occurring synchronously in antagonist muscles, similar to what is seen with dystonia. The observation stressed here, which has been often overlooked, is that the involuntary activity is often produced as an overflow phenomenon from an attempted voluntary movement. It is possible, but difficult to prove, that all involuntary movement is a result of overflow since even in an apparently relaxed person there are postural movements and adjustments that are continuously ongoing.

A major facet of the pathophysiology of voluntary movement in patients with athetosis is also overflow, with the excessive innervation occurring in the antagonist muscles in a variety of patterns. The minimal abnormality, occurring regularly or irregularly in groups A and B, was a burst of EMG activity in the antagonist prior to the first agonist burst. Such a pattern is rarely seen in a normal subject who behaves as if he is “winding up” for the movement similar to the back-swing of the baseball batter. When the pattern is seen normally, however, it is not of large magnitude and is not persistent. The typical normal pattern for the antagonist muscle is to be inhibited after the signal to move. For the patient with athetosis, the minimal functional deficit from initial antagonist activity would be prolongation of reaction time, a phenomenon recognised in patients with athetosis.

The maximal functional deficit is having the limb go in the direction opposite that which is intended, a bizarre phenomenon long recognised.

A second pattern of excessive antagonist activity is seen in group C who demonstrated a 2 Hz action tremor in trying to accomplish the movement. With each burst of tremor the antagonist activity came in strongly and before the agonist activity had finished. The apparent functional consequence is that the amount of movement in each cycle is limited, multiple cycles are needed to complete the movement, and the movement is slowed. Prolongation of movement time, which characterised most of our patients, is a well-known phenomenon in patients with athetosis and also dystonia.

The third pattern of overflow to the antagonist is co-contraction, and this characterised groups D, E and F comprising nine of the fourteen patients. Co-contraction was noted clinically by Wilson who described the phenomenon as “loss of reciprocal innervation”. Synchronous activity in antagonist muscles in electromyographic studies of voluntary movement has been noted previously in patients with athetosis and also dystonia. Some co-contraction can be present normally in both ballistic and slower, ramp movements, but the magnitude is not very large and it never seems to slow down the movement as it seems to do for the athetoid patients. Activation of the antagonist was very intense in some patients and it appeared as if the patients were fighting against an outside force in order to accomplish the task. Often, the harder they tried, the more the antagonist was activated. Patients in group E were able to achieve a favorable relationship between agonist and antagonist by a reduction of activity in both muscles suggesting
reduced effort. The total failure of patients in
group F was certainly due in part to this excessive
antagonist activity.

An abnormality in addition to the excessive activity
in the antagonist is the prolongation of duration of
initial agonist firing which occurred in all patients
except the one in group A. To a certain extent, at
least in group B, this might be due to spasticity since
spasticity is often associated with the athetosis and
injury to the pyramidal tract can give rise to pro-
longation of the first agonist burst.16 17 For most of
the patients, however, prolonged agonist activity
was probably due in large part to the fact that the
movements were quite slow despite the attempt to
move rapidly. Slow movements are characterised by
prolonged, continuous activity in the agonist.3 Nor-
mally there may be some co-contraction of the
antagonist in slow movements, but this would never
be to the extent seen here where antagonist activity
clearly limits the progress of the movement.

Athetosis and dystonia are clearly related
involuntary movements and our patients exhibited
both. As can be appreciated from the table, the
degree of impairment of voluntary movement in our
patients correlated better with the amount of spon-
taneous dystonia than with the amount of sponta-
neous athetosis.

The location of the lesions responsible for the
athetosis in our patients is not known. C. Vogt18 was
the first to implicate the striatum as the site of the
lesion in “double-athetosis”, a term which refers to
bilateral athetosis which is the descriptive category
for our patients. Carpenter19 reviewed the world’s
pathological literature of 71 cases of athetosis
including 34 cases of double athetosis. He conclud-
ed that double athetosis could result from bilateral
lesions in the striatum or globus pallidus, although
frequently other lesions in the nervous system might
be present. The most common condition was status
marmoratus (état marbré) of the striatum. More
recently Dooling and Adams20 reported a detailed
pathological investigation of several cases with the
related disorder of posthemiplegic athetosis and
concluded that the responsible lesion was in the
striatum. On the basis of this evidence we presume
our patients had basal ganglia lesions.

The derangement of movement seen in our
patients with athetosis is compatible with our previ-
ously proposed hypothesis of the role of the basal
ganglia in normal movement.2 21 The command
signal for a normal movement must specify the mus-
cles to be activated, including the extent of their
activation and the timing of the muscle contractions.
We have suggested that the basal ganglia help select
the muscles to be activated and energise them
appropriately. The evidence for this proposal has

been that patients with Parkinson’s disease, who
have one type of derangement of basal ganglia func-
tion, select inappropriately few muscles for a move-
ment and do not energise them adequately. Syner-
gistic muscle activity such as arm swing when walk-
ing is reduced, and antagonist muscles do not co-
contract.2 Patients with athetosis have the opposite
problem; they innervate too many muscles with too
much power. This overflow into even inappropriate
synergists is interpreted as the involuntary move-
ment of athetosis. Overflow extends to the antag-
onist of the movement and seriously disrupts it caus-
ing it to be slowed and clumsy. Hence, it appears that
deranged basal ganglia influences can adversely
affect the timing of a movement which (by our own
hypothesis) is ordinarily set by the cerebellum.

We would agree with Denny-Brown that athetosis
represents a “degradation of movement”.1 In his
view, athetosis reflects the “lack of fine cortical con-
trol” and “represents the unrestrained activity of the
reflex direction of movement”. The reflexes set up
the postures between which the athetoid movements
occur. As had been pointed out to us recently by RK
Byers, however, some subcortical reflexes (such as
the tonic neck reflex) of children with athetosis, may
be smooth and efficient even after the athetosis
develops. We would propose that athetoid move-
ments represent movement overflow from move-
ments which arise cortically and are degraded from
lack of the basal ganglionic contribution.

References

1 Denny-Brown D. Clinical symptomatology of disease of
the basal ganglia. In: Vinken PJ, Bruyn GW, eds.
Handbook of Clinical Neurology Amsterdam: North

2 Hallett M, Khoshbin S. A physiological mechanism of

3 Hallett M, Marsden CD. Ballistic flexion movements of

4 Hallett M, Marsden CD. Physiology and pathophysi-
ology of the ballistic movement pattern. In: Desmedt
JE, ed. Progress in Clinical Neurophysiol Basel:

5 Hallett M, Shahani BT, Young RR. EMG analysis of
stereotyped voluntary movements in man. J Neurol

6 Hoefer PFA, Putnam TJ. Action potentials of muscles in
athetosis and Sydenham’s chorea. Arch Neurol

7 Putnam TJ. The diagnosis and treatment of athetosis and

8 Thiebaut F, Isch F. Etude clinique cinematographique et
bioélectrique du quatre formes d’athébose. Rev Neurol
(Paris) 1952;87:26–41.
19 Carpenter MB. Athetosis and the basal ganglia; review of the literature and study of forty-two cases. Arch Neurol Psychiatry 1950;63:875–901.