Short report

Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type

PA BARFORD, JA BLAIR, C EGGAR, C HAMON, C MORAR, SB WHITBURN
From the Department of Chemistry, The University of Aston in Birmingham, Birmingham UK

SUMMARY There is a defect in tetrahydrobiopterin metabolism in brains from subjects with senile dementia of Alzheimer type compared to age-matched controls. This defect results in lowered total biopterin concentrations in brain. Brains from subjects with senile dementia of Alzheimer type retain their ability to synthesis neopterin and have normal dihydropteridine reductase activity, indicating a specific loss of ability to convert dihydromeopterin triphosphate to tetrahydrobiopterin.

The synthesis of dopamine and noradrenaline in the brain is dependent upon the activity of tyrosine hydroxylase, and in turn is regulated by the concentration of the hydroxylase cofactor, 5, 6, 7, 8-tetrahydrobiopterin (BH₄). Recent reports have suggested a defect in BH₄ metabolism in senile dementia of Alzheimer type; biopterin concentrations in serum and CSF are lowered in patients with senile dementia of Alzheimer type compared to age-matched controls, suggesting a role for BH₄ in the pathology of senile dementia of Alzheimer type. Williams et al. have shown that biopterin concentrations in CSF fall with age, suggesting a decrease in the tetrahydrobiopterin available for neurotransmitter biosynthesis. We have studied BH₄ synthesis, dihydropteridine reductase activity and biopterin and neopterin concentrations in the temporal lobe of patients dying with senile dementia of Alzheimer type and in age-matched controls, and report the results here.

Method

Brain samples
Samples of temporal lobe (Brodmann area 20) removed at necropsy from eight normal subjects and eight subjects with senile dementia of Alzheimer type were obtained from the MRC brain bank. These brain samples were matched for age, drug therapy and time to necropsy. Brain samples were stored at −70°C until required. Twenty percent homogenates of brain samples in 0.1 M tris buffer pH 7.6 were prepared and centrifuged at 100 000 g for 40 minutes. Supernatants were used for all measurements. Protein was measured by the biuret method. Each brain sample was assayed for dihydropteridine reductase, BH₄ synthesis activity, total neopterin and total biopterin.

Assay of dihydropteridine reductase
Dihydropteridine reductase was assayed by the method of Craine et al. Each incubation contained 10⁻⁴ M nicotinamide adenine dinucleotide, reduced form (NADH) 10⁻³ M H₂O₂, 8 μg horseradish peroxidase, 2.5 x 10⁻³ M sodium azide, 10⁻³ M, 7-dimethyltetrahydropterin, in 0.05 M tris buffer pH 7.6, and 0.02 ml of brain extract in a total volume of 1 ml.

Measurement of BH₄ synthesis
BH₄ synthesis was measured by the method of Fukushima et al. Each incubation contained 6 x 10⁻⁴ M guarnosine triphosphate (GTP), 5 x 10⁻³ M adenine dinucleotide phosphate, reduced form (NADPH), 10⁻³ M MgCl₂, and 0.1 ml of brain extract in 7.5 x 10⁻⁴ M tris buffer pH 8.0, in a total volume of 1 ml. Under these conditions the synthesis was linear for a period of 3 h and the concentrations of NADPH and GTP were not rate limiting. For controls incubations were carried out in the absence of GTP and/or NADPH. Incubation was for 3 h at 37°C in the dark. The reaction was stopped with 2 ml of 0.1 M HCl and reduced biopterins oxidised with I₂. Total biopterin

Address for reprint requests: Prof JA Blair, Dept of Chemistry, University of Aston in Birmingham, Birmingham B4 7ET, UK.

Received 7 July 1983 and in revised form 17 January 1984. Accepted 30 January 1984
was measured by (HPLC) high performance liquid chromatography.

Measurement of total neopterin and total biopterin concentrations in brain homogenates was by HPLC after acid-iodine oxidation.7

Results and discussion

Recovery of BH4 synthesising activity and dihydrop teridine reductase from control brain and senile dementia of Alzheimer type brains was 90–95% showing that, as in the rat,6 BH4 synthesising enzymes and dihydropteridine reductase are in the cell supernatant fraction.

Kinetic measurements on the synthesis of BH4 in control brains showed that the concentrations of GTP and NADPH used for the incubation were not rate-limiting. Because senile dementia of Alzheimer type brains showed little or no synthesis of BH4, it was not possible to carry out kinetic measurements on these samples. Determination of Km for dihydropteridine reductase in control brain extracts and senile dementia of Alzheimer type brain extracts gave Kms of 1·2 x 10^{-4}M and 1·5 x 10^{-4}M for 6, 7, dimethyltetrahydropterin and NADH respectively. These values are similar to those for the sheep liver enzyme. There was no correlation between time to necropsy and either BH4 synthesis activity or dihydropteridine reductase in either group.

BH4 metabolism was impaired in the brains of subjects with senile dementia of Alzheimer type compared to age-matched controls (table). Synthesis of BH4 was significantly lower in senile dementia of Alzheimer type brains (0·046 ng biopterin/mg protein/h) than in the control brains (0·616 ng biopterin/mg protein/h) (p = 1% Wilcoxon sum of ranks). In the control group there was evidence for a decrease in the ability to synthesise BH4 with age, the youngest brain (age 44 years) having a synthesis activity of 1·05 ng biopterin/mg protein/h, six brains aged 70–80 years having a mean of 0·75 ng biopterin mg protein/h and one brain (age 89 years) having synthesis activity of 0·11 ng biopterin/mg protein/h. Dihydropteridine reductase activity in temporal lobes from subjects with senile dementia of Alzheimer type was higher than that in temporal lobes from control subjects, but the elevation was not significant. Measurement of total neopterin and total biopterin in temporal lobes gave a neopterin/biopterin ratio of 0·55 in control subjects and 5·23 in subjects with senile dementia of Alzheimer type. In temporal lobes from subjects with senile dementia of Alzheimer type the total biopterin concentration had fallen, but the total neopterin concentration had risen compared to age-matched controls.

The results presented here demonstrate a deficit in BH4 in temporal lobes of subjects with senile dementia of Alzheimer type. This deficit is not due to lack of dihydropteridine reductase, but a failure to synthesise BH4 and is in agreement with the results of Morar et al,3 who have shown that total biopterin concentrations were significantly lowered in the CSF of subjects with senile dementia of Alzheimer type compared to age matched controls. BH4 synthesis activity in senile dementia of Alzheimer type brains was 7·5% of that found in control brains. This decrease was greater than found for other enzymes in senile dementia of Alzheimer type.4 The high level of synthesis activity in the one younger subject in the control group compared to older controls is indicative of a decrease in the ability to synthesise BH4 with increasing age, a result which is in agreement with the work of Williams et al,2 who have shown that BH4 concentrations in CSF decrease with increasing age. The alteration in the neopterin to biopterin ratio in senile dementia of Alzheimer type compared to controls shows that the failure to synthesise BH4 in senile dementia of Alzheimer type is not due to a defect in GTP cyclohydrolase, the enzyme that converts GTP to dihydroneopterin triphosphate, but that the defect occurs in the biosynthetic pathway after dihydroneopterin and demonstrates a defect in BH4 synthesis in vivo. In this respect the defect is comparable to that found in those neonates who are unable to make BH4 due to a genetic defect.7 These children are able to synthesise dihydroneopterin but lack the ability to convert dihydroneopterin to BH4. Since senile dementia of Alzheimer type brains retain the ability to synthesise dihydroneopterin, but lack the ability to make BH4, and dihydropteridine reductase is unimpaired, it seems unlikely that these results are due to neuronal loss in senile dementia of Alzheimer type brains.
In conclusion, the temporal lobes from subjects with senile dementia of Alzheimer type had impaired ability to synthesise BH₄ compared to age-matched controls. The defect in BH₄ synthesis was not due to loss of brain cells, but to a loss of ability to convert dihydronopterin to BH₄. The results suggest that the capacity to synthesise BH₄ decrease with increasing age, and that loss of the capacity to synthesis BH₄ may contribute to the development of Alzheimer's disease.

The authors are grateful to Dr G Reynolds, the Brain Tissue Bank, MRC Neurochemical Pharmacology Unit, Addenbrooke's Hospital, Cambridge, for brain samples and to Shell (UK) Ltd for financial support. CH is the recipient of an SERC studentship.

References


