

Short report

Cryptococcal meningitis and cerebral toxoplasmosis in a patient with acquired immune deficiency syndrome

FRED BAHLS, SM SUMI

From the Division of Neurology, Department of Medicine, Harborview Medical Center and the Laboratory of Neuropathology, Department of Pathology, both of the School of Medicine, University of Washington, Seattle, Washington, USA

SUMMARY A 34-year-old homosexual male developed cryptococcal meningitis as the initial manifestation of Acquired Immune Deficiency Syndrome (AIDS). With antifungal therapy he improved. Six weeks later he developed focal motor seizures and progressive hemiplegia. Computer assisted tomography revealed multiple, ring-enhancing, low density lesions. The patient expired and at necropsy he was found to have multiple toxoplasma brain abscesses as well as chronic cryptococcal meningitis. This case demonstrates that in a patient with AIDS who has pre-existing central nervous system infection who develops new neurological symptoms the possibility of a second and potentially treatable infection must be considered and its diagnosis pursued vigorously.

Neurologic complications in the acquired immune deficiency syndrome (AIDS), both infectious and neoplastic, are well-recognised\(^1\)\(^2\) and occur in approximately 30\(^\%\)\(^3\).\(^3\) These infections may be by any opportunistic organism\(^4\) and often are due to more than one organism.\(^5\) Although the association of central nervous system infections with extraneural infections by the same or different organisms has been noted,\(^1\)\(^2\) documented infections of the CNS by more than one organism is rare. We describe an AIDS patient with cryptococcal meningitis and cerebral toxoplasmosis.

Case report

This 34-year-old homosexual male was admitted on 12 January 1984 with a two-week history of nausea and vomiting, headache, stiff neck, photophobia and a 10-pound (5 kg) weight loss. He had oral candidiasis, mild nuchal rigidity, bilateral shotty inguinal lymph nodes and moderate hepatosplenomegaly. He was afebrile. Neurologic examination showed only intermittent mild confusion.

The following were normal: chest radiograph, electrolytes, alkaline phosphatase, haematocrit and platelet count. The white blood count was 4900/mm\(^3\). Lumbar puncture revealed an opening pressure of 370 mm, protein 102 mg/100 ml, glucose 32 mg/100 ml, and 58 white blood cells/mm\(^3\) (93\% lymphocytes). India ink examination revealed multiple cryptococci, and cryptococcal antigen was positive at a titre of 1:2048. The patient was treated with amphotericin B and 5-fluorocytosine. Skin test was positive for candida, but negative for tricophyton and PPD, and there was a positive serology for cytomegalovirus. The ratio of helper (5\%) to suppressor (67\%) T cells was abnormal, consistent with the diagnosis of AIDS.\(^6\) The patient was discharged on 29 January 1984 on amphotericin B and 5-fluorocytosine. Lumbar puncture on 26 February had a protein of 31 mg/100 ml, normal glucose level, 15 white blood cells/mm\(^3\) (100\% lymphocytes) and positive India ink examination. Cryptococcal antigen titre was 1:32. Two days later the patient developed left arm and leg spasms lasting five minutes.

On 13 March he was re-admitted with headache, nausea and vomiting, progressive weakness and incoordination of the left arm, visual blurring and occasional scotomata. General examination was unchanged. Neck was supple. The patient was alert and fully oriented with clear speech, but
with perivascular infiltration by lymphocytes in the adjacent blood vessels. At the margins of the necrosis there were numerous toxoplasma organisms scattered singly and only rarely forming clusters or pseudocysts. No cryptococcal organisms were identified in these abscesses but they were readily found in the overlying meninges.

Discussion

Documented simultaneous or sequential infection of the CNS by more than a single organism, even in immunocompromised patients, is rare. Among 39 such patients, Hooper et al\(^7\) found only six patients who had sequel infection of the CNS by two different organisms. In contrast 19 patients had infection at an extraneural site by a second organism. Polymicrobial involvement of the CNS has been reported rarely in patients with AIDS. Levy et al\(^8\) described two patients with CNS infection, one with cytomegalovirus and toxoplasma and the other with cytomegalovirus and cryptococcus. However, except for the patient mentioned by Pitchenick et al\(^9\) with tuberculous brain abscess and subsequent toxoplasma encephalitis, a patient described by Post et al\(^10\) with toxoplasmosis and a prior history of cryptococcal meningitis, and two patients described by Moskowitz et al\(^11\) with toxoplasma encephalitis and acid fast bacillus infection, the patient reported here is the first with documented multiple non-viral infections of the CNS in a patient with AIDS.

Cryptococcus and toxoplasma are both common causes of infections in patients with AIDS. Toxoplasmosis is very common in this population and is the leading cause of focal brain lesions.\(^1\)\(^0\)\(^1\)\(^2\) The diagnosis of the multifocal lesions in our patient was complicated by the known presence of cryptococcal meningitis, since single or multiple cryptococcal granulomas of the CNS occur in association with meningitis.\(^8\)\(^1\)\(^3\)\(^–\)\(^1\)\(^5\) Although the lesions in our patient were typical of those produced by toxoplasmosis, this diagnosis cannot be made on CT appearance alone, since lymphoma, other neoplasms, and other infectious agents can produce similar pictures.\(^8\)\(^1\)\(^0\)\(^1\)\(^6\)\(^1\)\(^7\) emphasising the need for a diagnostic brain biopsy.

The failure of the brain biopsy to identify toxoplasmosis in this case was probably because it was a superficial biopsy from an unaffected area. Even when a lesion is biopsied, identification of toxoplasma trophozoites can be difficult.\(^1\)\(^7\)\(^1\)\(^8\) However, biopsy remains the best means of diagnosis, since serologic tests are often non-diagnostic in AIDS patients.\(^8\)\(^1\)\(^1\)\(^8\)

We thank Dr DD Reichenback, who performed the neurosurgery and made the brain and his findings available to us.
References

