Short report

Clinical and biochemical effects of gamma-vinyl Gaba in tardive dyskinesia

J M GAIO, P POLLAK, M HOMMEL, J PERRET
From the Clinique Neurologique, CHU Grenoble, France

SUMMARY Clinical and biochemical effects of Gamma-vinyl-Gaba (GVG) have been evaluated in a blind video-controlled study in 10 psychiatric patients (mean age 71 yr) with tardive dyskinesia. CSF free and total Gaba and homocarnosine concentrations increased from three to five fold with GVG treatment. Despite the GVG-induced biological effects on Gaba metabolism, GVG did not consistently improve tardive dyskinesia. Psychomotor side-effects occurred in older patients, who only tolerated GVG dosages of 2–4 g/day.

Tardive dyskinesia, a neurological disorder of abnormal hyperkinetic movement, is a frequent side effect of chronic administration of neuroleptic treatment. It occurs in predisposed patients, in whom it may become a persistent problem for which no entirely satisfactory treatment is known. The pathophysiology of tardive dyskinesia has not been definitively elucidated but the most widely accepted hypothesis is the development of dopamine receptor hypersensitivity of the striatum following prolonged exposure to neuroleptics. In chronically neuroleptic treated laboratory animals, the co-administration of Gabaergic agonists has been shown to prevent the occurrence of apomorphine-induced stereotypes and to inhibit neuronal dopaminergic activity. Therefore Gabaergic agonists might be effective agents to treat tardive dyskinesia in humans. Clinical trials using drugs with putative Gabaergic activity have produced mixed results. Thus, sodium valproate and baclofen have been claimed to be slightly beneficial. Muscimol and γ-acetylenic Gaba were also moderately effective but at the expense of unacceptable side effects. THIP was ineffective in tardive dyskinesia, with high doses being poorly tolerated.

Gamma-vinyl Gaba (GVG), an enzyme-activated irreversible inhibitor of Gaba-transaminase, produces large increases in brain Gaba concentrations of laboratory animals. In addition, oral administration of GVG to man produces dose-related elevation of CSF Gaba content probably reflecting increased brain Gaba levels. In a pilot single blind study with tardive dyskinesia patients, the administration of GVG reduced the hyperkinesia scores of six of nine patients without producing major side effects. Similar results were subsequently observed in several single blind placebo controlled studies. We also have carried out a single blind placebo controlled study with additional blind videotape rating of the effects of GVG in tardive dyskinesia patients. The clinical and biological effects of this treatment are reported.

Patients and methods

Ten elderly patients (55–85 years old, mean 71) hospitalised in a psychiatric institution were selected for the study. They were physically healthy and had exhibited stable tardive dyskinesia for at least 6 months prior to the study. They all gave informed consent. Relevant individual patient data are shown in the table. Five patients (Nos 2, 4, 5, 6, 9) entered the study with a concomitant neuroleptic treatment which had been maintained at the same dosage for at least the previous 3 months. The other patients had been off neuroleptic treatment for 1 to 3 years owing to their stable psychiatric condition. Two of the neuroleptic-treated patients (Nos 6, 9) were also receiving anticholinergic drugs.

Neuroleptic and anticholinergic drugs dosage remained
Clinical and biochemical effects of gamma-vinyl Gaba in tardive dyskinesia

Table Individual patient data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Psychiatric diagnosis</th>
<th>Duration of psychiatric illness (yr)</th>
<th>Duration of TD (yr)</th>
<th>Concurrent neuroleptic drug treatment (yr)</th>
<th>GVG Maximum dosage g/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>58</td>
<td>Residual schizophrenia</td>
<td>22</td>
<td>2</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>59</td>
<td>Cyclothymic disorder</td>
<td>15</td>
<td>2</td>
<td>15</td>
<td>Proporciazine 15</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>85</td>
<td>Schizophrenia</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>76</td>
<td>Atypical depression</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>Tiapride 600</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>81</td>
<td>Paranoia</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>Tiapride 100</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>55</td>
<td>Paranoiac schizophrenia</td>
<td>35</td>
<td>1</td>
<td>9</td>
<td>Thioridazine 100</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>66</td>
<td>Paranoia</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>Pipamperone 120</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>83</td>
<td>Paranoiac schizophrenia</td>
<td>20</td>
<td>7</td>
<td>20</td>
<td>Chlorpromazine 300</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>74</td>
<td>Paranoia</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>72</td>
<td>Cyclothymic disorder</td>
<td>54</td>
<td>7</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>

Mean ± SD 70.8 ± 11.9 19.5 ± 15.2 4.1 ± 2.7 16.4 ± 8.9 3.8 ± 1.8

unchanged throughout the study. The study began with a 2 week placebo period, followed by a 6 week period of GVG, and a final 2 week placebo period during which the patients received the same daily number of tablets as during the last week of GVG treatment. GVG or placebo was given twice daily. The starting dose of GVG was 1 g/day, this dose being increased by 1 g/day each week, to a maximum of 6 g/day. Should any dosage less than 6 g/day abolish all signs of tardive dyskinesia or be poorly tolerated, then that dose was maintained for the rest of the study.

Clinical evaluations
Symptoms of hyperkinesia and of Parkinsonism were recorded twice during the first week and then once weekly, with a videotape camera, at the same time of the day during a 10 minute standardised examination. At the end of the study all tapes were examined by the same rater who was blind as to the treatments. The rating scale for tardive dyskinesia included the examination of 10 body regions, each scored 0 to 4 according to the severity of the symptoms. The Parkinsonian symptoms were rated on 22 items also scored 0 to 4 for severity.

Biological evaluations
Routine safety biological tests were performed during the initial placebo period and repeated on the last day of the active treatment period. Lumbar CSF was obtained from seven consenting patients at the end of the initial placebo period and the 6-week GVG period. CSF was drawn at 8:00 am from fasting patients in the supine position. The 5th to 10th millilitres of CSF were collected as one ml fractions into tubes kept in dry ice. Each sample was immediately frozen at −70 C until analysis. Free and total Gaba, homocarnosine and GVG were assayed as previously described. Blood Gaba and GVG concentrations were also analysed on the last day of the initial placebo period and once weekly during the GVG treatment period.

Statistical analysis of the effects of GVG on tardive dyskinesia and Parkinsonism was made using Newman-Keuls test for individual scores and Student’s t test for global scores. Linear regression analysis was used for clinical-biological correlations.

Results
On the whole GVG had no significant effect on dyskinetic nor Parkinsonian symptoms at any dosage (fig 1). With GVG 2 g/day tardive dyskinesia scores slightly but not significantly improved. Individual data did not show any sustained improvement and a

Fig 1 Mean tardive dyskinesia and Parkinsonian scores. Scores are expressed on percentage, 100% representing the initial placebo scores. The columns represent the average of the scores of all the patients taking the same dosage. n is the number of patients for each dosage.
A slight Parkinsonian aggravating effect was observed in two patients (Nos 2, 4). Six patients completed the entire study. Of the four other patients, one (No 6) was withdrawn during the second placebo period because of reappearance of psychotic symptoms. Three patients stopped the study at the 6th week (No 7), 3rd week (No 9) and 2nd week (No 10) of the GVG period because of bad compliance. The maximum dosage of GVG ranged from 1 g/day to 6 g/day (mean 3·8 g/day ± 1·8). Side effects occurred in four patients (Nos 3, 4, 8, 9) consisting of bradypsychia, confusion, drowsiness and shuffling gait; all of these four patients were more than 74 years old, and two of them were slightly demented before the onset of the study. Oral GVG dosage was significantly related to serum and CSF concentrations but not to serum Gaba levels (data not shown). In all of the seven studied patients CSF concentrations of Gaba (free and total) and homocarnosine increased with GVG treatment from three to five-fold (fig 2). The increase of CSF free Gaba was proportional to the CSF GVG levels (fig 3) but did not correlate with oral treatment dosage. The elevations of free Gaba serum concentrations and CSF free Gaba concentrations were not related (p = 0·18). Standard laboratory data were not modified after GVG treatment.

Discussion

As no convenient long-term treatment is known for tardive dyskinesia using drugs acting on dopaminergic function, several studies have been performed with Gaba agonists.6–10 They produced mixed results ranging from no improvement10 to mild improvement6 9 and in this last case9 the improvement was generally accompanied by an increase in Parkinsonism. GVG has been reported by several centres to reduce the hyperkinetic symptoms of patients with tardive dyskinesia.14–18 This beneficial effect was not confirmed in our placebo-controlled study. There is no obvious single explanation for this discrepancy, but when the patient population and the GVG regimen are compared across studies, several points can be mentioned. The lack of effect of GVG in our study cannot simply be due to problems of compliance. Not only was the administration of the medication carefully monitored, but the biological results also show that GVG was found in the patients’ CSF and that CSF free Gaba concentrations increased proportionally to GVG CSF levels. The question of associated neuroleptic treatment was raised in a study where the positive effects of gamma-acyetyleng Gaba correlated with the strength of concomitant neuroleptic treatment. In studies with GVG, however, improvement of tardive dyskinesia was observed independently from neuroleptic treatment.16 18 In the present study half of the subjects were receiving neuroleptics, and their responses were not different from those patients not on neuroleptic treatment. The major difference between our study and those pre-
Clinical and biochemical effects of gamma-vinyl Gaba in tardive dyskinesia

Tardive dyskinesia is a condition often associated with the long-term use of antipsychotic medications. It is characterized by abnormal, involuntary movements of the face, lips, and tongue, and may also affect the extremities. Tardive dyskinesia is a common adverse effect of many antipsychotic drugs, and its management can be challenging.

CSF GABA concentrations

Several studies have examined CSF GABA concentrations in patients with tardive dyskinesia. GABA is an inhibitory neurotransmitter in the central nervous system (CNS), and changes in GABA concentrations can have implications for the presence or absence of tardive dyskinesia. In one study, CSF GABA concentrations were measured in patients with tardive dyskinesia and compared to controls. The results showed that CSF GABA concentrations were significantly lower in patients with tardive dyskinesia compared to controls, suggesting a possible role for GABA in the development of tardive dyskinesia.

GVG dosing

Gamma-vinyl GABA (GVG) is a GABA analog that has been studied for its potential therapeutic effects in various neurological disorders. Some studies have reported beneficial effects of GVG in tardive dyskinesia, with decreased dyskinesia scores seen in some patients. However, the mechanisms underlying these effects are not fully understood.

GABAergic drugs

GABAergic drugs, such as GABA agonists and GABA transport inhibitors, have been studied as potential treatments for tardive dyskinesia. These drugs work by increasing GABA levels in the CNS, which can lead to decreased dyskinesia scores in some patients. However, the effectiveness of these drugs can vary depending on the individual patient and the specific drug used.

References

20 Smith JM, Baldessarini RJ. Changes in prevalence, severity and recovery in tardive dyskinesia with age. *Arch Gen Psychiatry* 1980;37:1368–73.

