Serotonin in tension headache

R SHUKLA,* K SHANKER,† D NAG,* M VERMA,† K P BHARGAVA†
From the Departments of Neurology,* and Pharmacology and Therapeutics,† King George’s Medical College, Lucknow, India

SUMMARY Serotonin (5-hydroxytryptamine, 5-HT) is implicated in the pathogenesis of migraine; however, its role in tension headache has not yet been studied. The uptake of 5-HT by platelets in patients of tension headache was significantly higher compared with migraineurs as well as controls. The basal platelet 5-HT levels did not show a significant difference. The study implicates the role of serotonin in tension headache.

The involvement of 5-HT in migraine is well established. A decrease in basal platelet 5-HT as well as a reduced uptake of 5-HT by the platelets has been reported.1-4 However, platelet 5-HT uptake in tension headache has not so far been explored. It has been suggested that migraine (classical as well as common), tension-vascular and tension headache are a continuum of the same pathophysiology. The precise margins of these clinical entities are elusive.5 Hence it was considered appropriate to study the role of serotonin in tension headache. This appears to be the first report of platelet serotonin uptake in tension headache.

Patients and methods

Twenty patients with tension headache, attending the neurology out-patients department, were included in the study. The mean age was 29.5 with a range of 14 to 45 years and male:female ratio was 1:3. Nineteen patients of migraine were also studied. The mean age was 30.7 years (range 16 to 50 years) and male:female ratio 1:1.7. The diagnosis of migraine was based on the criteria given by the World Federation of Neurology6 whereas tension headache was diagnosed according to the following criteria based on a modification of those suggested by the ad hoc committee of the headache group.7 "Patients with headache lasting for 24 hours, non localised, dull ache described as heaviness or a band being tightened around the head without any nausea or vomiting, precipitated by tension and stressful situations, relieved by sleep or tranquillisers and no relief with ergot alkaloids".

Fifteen age and sex matched controls comprising unpaid healthy volunteers taken from hospital staff and patients suffering from neurological disorders not likely to affect 5-HT metabolism (such as myopathy, peripheral neuropathy and motor neuron disease) were also included.

Patients suffering from hypertensive and ischaemic heart disease were excluded. None of those included in the study was taking drugs (analgesics, antidepressants etc.) and food items (banana, tomato, pineapple, nuts, cheese etc) known to effect 5-HT metabolism, for 7 days prior to collection of blood samples.

Blood was collected (9 ml) by venepuncture from the median cubital vein at 9.00 am using a plastic syringe with a 21 gauge needle. It was immediately transferred to plastic tubes, containing 1 ml of 3.8% sodium citrate, and kept in iced containers.

Platelet rich plasma (PRP) was prepared by centrifugation according to the method of Born and Gillson.8 All glass equipment used in the experiments was coated with silicone. Platelet counts in PRP were done in a Neubauer haemocytometer at a dilution of 1 in 20. Basal platelet serotonin content was determined using 1 ml of PRP by the spectrophotofluorometric method.9 Recovery of 5-HT by the present method was 80–90%. The results are expressed in ng/109 platelets.

Platelet 5-HT uptake was measured by the method of Gujral et al10 by determination of the content of radioactivity of platelets incubated with H3-5-HT oxalate (specific activity, 26.4 Ci/mmol; New England Nuclear Corporation). Solution of labelled amine was made in normal saline. Platelet rich plasma samples (1 ml) were preincubated for 5 minutes at 37°C before addition of labelled 5-HT (200 pmol) at 10, 20 and 30 pmol concentrations. The reaction mixture was incubated for 10 minutes with constant stirring at 37°C. Uptake of amine process was terminated by the addition of 2 ml cold solution of formaldehyde (4%). Tubes were cooled and then centrifuged at 8000 g for 20 minutes at 0°C. The supernatant was decanted and stored, the inner side of the centrifuge tube was wiped with filter paper. The platelet pellet was digested in 0.2 ml formic acid (21 M) and 0.3 ml

Address for reprint requests: Dr R Shukla, Department of Neurology, KG’s Medical College, Lucknow-226 003, India.

Received 21 January 1987 and in revised form 20 May 1987. Accepted 22 May 1987
Serotonin in tension headache
distilled water for one hour at room temperature, and then transferred to glass counting vials containing 10 ml of scintillant (dioxane: toluene: methanol: naphthalene: 1.4 bis 2-5-phenyl oxazoly benzene: diphenyl oxazole). The radioactivity was measured by automatic Packard Scintillation Counter with counting efficiency of tritium (H3) 33%. The control as well as samples of study group were analysed simultaneously. Statistical analysis was done by Student's t test.

Results

Lower platelet counts in PRP were observed in patients with tension headache as compared to controls and migraineurs. The basal platelet 5-HT values were higher in tension headache than patients of migraine. Migraineurs had a lower basal 5-HT as compared with tension headache as well as controls. Platelet count and basal 5-HT changes were not statistically significant.

The uptake of 5-HT by platelets was significantly higher in tension headache at all the concentrations of H3-5-HT (table). The platelet 5-HT uptake in tension headache did not show a significant difference (fig) with respect to age (less than 30 and more than 30 years), sex (male and female) and duration of disease (less than 5 and more than 5 years).

Discussion

Platelet serotonin has been the focus of attention in vascular headaches particularly migraine; however, it has not been fully explored in tension headache. An isolated report mentions lower basal 5-HT levels in patients suffering from frequent attacks of tension headache as compared with controls.11 While the basal 5-HT level in tension headache did not differ significantly from controls and migraineurs, the uptake of 5-HT by the platelets was significantly higher in the present study.

Emotional factors are important in patients with tension headache and are present in nearly all the cases.12 The increased amount of endogenously released 5-HT as a result of stress, may be taken up by the platelets and also lead to vasoconstriction and ischaemia of the temporal muscles, since serotonin has been shown to be a potent vasoconstrictor of the human temporal artery.13 However, it cannot be stated whether the increased uptake of 5-HT is due to a platelet abnormality (such as alteration in the permeability of membrane) or to some other metabolic or biochemical factor present in the plasma.

Vascular reactivity is important in tension headache and the amplitude of pulsation of scalp vessels is reduced in these patients.14 This suggests that patients of tension headache are unable to "summon up the blood" necessary to nourish the hyperactive scalp musculature.15 The occurrence of alteration in vascular contractility is also supported by the observation that the pain of tension headache is aggravated by

Table: Platelet counts in PRP basal platelet 5-HT and uptake of 5-HT

<table>
<thead>
<tr>
<th></th>
<th>Tension headache (n = 20)</th>
<th>Migraine (n = 19)</th>
<th>Controls (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet counts (in 1 x 10^8/ml)</td>
<td>2.08 ± 0.16</td>
<td>2.39 ± 0.22</td>
<td>2.70 ± 0.31</td>
</tr>
<tr>
<td>Basal platelet 5-HT* (in ng/10^8 platelets)</td>
<td>53.3 ± 9.26</td>
<td>33.2 ± 7.12</td>
<td>53.1 ± 6.70</td>
</tr>
<tr>
<td>Platelet 5-HT uptake (in CPM/10^8 platelets)</td>
<td>at 10 pmol 719.8 ± 74.26+</td>
<td>419.9 ± 45.68</td>
<td>478.4 ± 55.70</td>
</tr>
<tr>
<td></td>
<td>at 20 pmol 1161.1 ± 101.62+</td>
<td>691.2 ± 82.56</td>
<td>737.6 ± 132.72</td>
</tr>
<tr>
<td></td>
<td>at 30 pmol 1867.8 ± 173.58+</td>
<td>1227.3 ± 177.50</td>
<td>1200.9 ± 147.73</td>
</tr>
</tbody>
</table>

The values in each group represent Mean ± SEM.

*Basal 5-HT estimations were done in 14 patients of tension headache, 12 with migraine and 11 controls.

The differences in platelet counts and basal 5-HT were statistically not significant.

+ p<0.01, + + p<0.001, + + + p<0.002 as compared with migraineurs and + p<0.02, + + p<0.01 as compared with controls.
vasoconstrictor agents and improved by vaso-
dilators. 13

Differentiation between patients of common mi-
graine and tension headache may not always be easy; moreover, it is now felt that they may be the polar
forms of a continuum of the same clinical spectrum
rather than well defined separate entities. Thus while
migraine has been termed as a "low serotonin syn-
drome" tension headache on the other end of the
clinical spectrum may be called as "high serotonin
syndrome". Serotonin is considered to be important
in maintaining the vascular tone of the extracranial
vessels in normal man. 13 Thus while migraine is due
to excessive vasodilatation, tension headache may be
due to excessive vasoconstriction. Whereas in the
former the platelet 5-HT uptake is reduced, in the
latter it is increased.

Sicuteri 17 has suggested that there may be a central
deficiency of monoamines or endorphins in the brain-
stem which may be responsible for the syndrome of
non-organic central pain (which includes the entity
described as tension or muscle contraction headache).
Platelets have been suggested to be a suitable model
to study the serotonergic mechanisms of brain 5-HT
neurons. 18 The findings of the present study are com-
patible with the nociceptive theory of Sicuteri. It is
possible that increased uptake of 5-HT in the sero-
tonergic neurons in tension headache may lead to
lower levels of 5-HT at the synapses causing facilita-
tion of nociceptive impulses.

References

1 Curran DA, Hinterberger H, Lance JW. Total plasma
serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-
m-methoxymandelic acid excretion in normal and mi-
2 Anthony M, Hinterberger H, Lance JW. Plasma sero-
tonin in migraine and stress. Arch Neurol
3 Dalsgaard-Nielsen T, Genevke JK. Serotonin (5-HT)
release and uptake in platelets from healthy persons and
migrainous patients in attack free intervals. Headache
1974;14:26–32.
4 Pradalier A, Launay JM. 5-Hydroxytryptamine uptake
by platelets from migrainous patients. Lancet
1982;ii:862.
5 Lance JW. The Mechanism and Management of Head-
6 World Federation of Neurology Research Group on Mi-
graine and headache. Definition of migraine. In:
Cochrane AL, ed. Background to Migraine. London:
7 Friedman AP, Finley KH, Graham JR, Kunkle EC, Ost-
feld AM, Wolff HG. Classification of headache. The
Ad Hoc Committee on classification of headache.
8 Born GVR, Gillson RE. Studies on the uptake of
5-hydroxytryptamine by blood platelets. J Physiol
(Lond) 1959;146:472–91.
9 Snyder SH, Axelrod J, Zewing M. A sensitive and
specific fluorescence assay for tissue serotonin. Bio-
chem Pharmacol 1965;14:831–5.
10 Gujrati VR, Shanker K, Parmar SS, Vrat S, Chand-
drawati, Bhargava KP. Serotonin in toxaemia of preg-
11 Rolf LH, Wiele G, Brune GG. Serotonin in platelets of
patients with migraine and muscle contraction headache.
12 Martin MJ. Psychogenic factors in headache. Med Clin
13 Carroll PR, Ebeling PW, Glover WE. The response of
the human temporal and rabbit ear artery to
5-hydroxytryptamine and some of its antagonists.
14 Tunis MM, Wolff HG. Studies on headache: Cranial ar-
tery vasoconstriction and muscle contraction head-
15 Onel Y, Friedman AP, Grossman J. Muscle blood flow
studies in muscle contraction headache. Neurology
16 Sjaastad O. Vascular and biochemical changes in mi-
graine. In: Saxena PR, ed. Migraine and Related Head-
aches. Rotterdam: Erasmus University, 1975;55–69.
17 Sicuteri F. Monoamine super sensitivity in non-organic
central pain (idiopathic headache). Excerpta Med
1977;427:194.
18 Sneddon JM. Blood platelets as a model for monoamine
Progress in Neurobiology. Vol 1, Part 2. New York: