Matters Arising

Bioperins in arginase, dihydropteridine reductase and phenylalanine hydroxylase deficiency

Sir: We have reported a child with arginase deficiency who had a disturbance of central monoamine metabolism which resembled that seen in patients with phenylalanine hydroxylase (PH) deficiency.1 Cutler2 suggests that in both disorders the amine changes might be secondary to a decreased activity of dihydropteridine reductase (DHPR). Inherited deficiency of this enzyme, which recycles tetrahydrobiopterin, the cofactor for the aromatic amino acid hydroxylases, leads to defective amine synthesis3 and in addition4 to an increase in the concentrations of total bioperins in urine,4 CSF,5 and blood,6 due mainly to accumulation of dihydrobioperin.

If Cutler's proposal was correct one might expect a similar increase in bioperins to occur in patients with arginase or phenylalanine hydroxylase deficiencies when the plasma arginine or phenylalanine concentrations were raised. Patients with PH deficiency do show a rise in bioperins which is proportional to the rise in phenylalanine. We have demonstrated, however, that the rise in the CSF is due to tetrahydrobioperin in PH deficiency and dihydrobioperin in DHPR deficiency,7 indicating that the mechanism for the rise is likely to be different in the two disorders.

At the time of investigation of the patient with arginase deficiency, methods were not available for measurement of the individual bioperin species in CSF. CSF total bioperins were, however, measured using Critidia assay8 (3-8 and 2-1 ng/ml, control mean 3-7 ng/ml s.d. ± 0-8) and using HPLC following manganese dioxide oxidation9 (6-0 and 5-4 ng/ml, control mean 4-78 s.d. ± 1-75). These normal values contrast with the increase in bioperins in CSF found using the Critidia assay in four patients with PH deficiency (range 5-4–16 ng/ml) and one patient with DHPR deficiency (range 9–11 ng/ml), and similarly using the HPLC assay in one patient with PH deficiency (19-1 ng/ml) and two patients with DHPR deficiency (range 9-1–18-9 ng/ml).

Whole blood total bioperins (4-8–6-0 ng/ml) and DHPR activity (135–141 umol/min/l) were also normal in the patient with arginase deficiency and did not alter when the hyperargininemia was corrected. In PH deficiency, whole blood DHPR activity is also unaffected.10 Indeed whole blood DHPR activity is used to distinguish between deficiency of this enzyme and PH.10

These results do not support the idea that arginine and phenylalanine inhibit DHPR activity in subjects with arginase or PH deficiency.

KEITH HYLAND
ISABEL SMITH
JAMES V LEONARD
Institute of Child Health,
30 Guilford Street,
London WC1N 1EH, UK.

References

The dementia of Alzheimer’s disease: an update

Sir: Neary and colleagues1 argue that the dementia of Alzheimer’s disease (AD) is largely a reflection of the degeneration of pyramidal, non-cholinergic, cortical neurons. An experiment we have carried out in the rat suggests a mechanism whereby degeneration of glutamic and aspartic (dicarboxylic) acid-releasing, non-cortical, neurons causes this dementia.

An electrolytic lesion was placed in the left amygdala of six 37 day old male Wistar rats from an inbred in-house colony under ether anaesthesia. The lesion was made stereotaxically at two sites (in the central part of the anterior half of the amygdala and the second in the posterior half) using an insulated electrode (5 μA passed for 1 min at each site). Animals were killed 54/55 days after surgery. The electrode track in all cases passed through the dorsolateral cerebral cortex and the lateral margin of the striatum, to or the amygdala. In no animal was there any evidence of damage along the track other than that small amount attributable to the passage of the electrode. The left amygdala had been completely destroyed in all animals by the lesion, with slight involvement of the adjacent pyriform cortex but with no damage of other structures recognised and no involvement directly of the substantia innominata or basal nucleus itself. The entire extent of the nucleus basalis of Meynert (nbM) was dissected2 and, along with tissue from six unoperated animals, was homogenised in 10 mM Tris-HCl, pH 7-4, containing 0-32 M sucrose and 1 mM EDTA using a glass-teflon homogeniser. The (12 animals came from two litters, six in each, three from each litter being operated on). High affinity Na+-dependent uptake of D-[3H]-aspartic acid was assessed3 using 300 nM of substrate and a Krebs Ringer phosphate buffer containing either 161 mM Na+ (A) or 20 mM Na+ and 141 mM chloride (B). The Na+-dependent uptake value (A minus B, pmol/mg protein/min ± SD) of the left nbM from the lesioned animals was 28±2 ± 120 units. The control Na+-dependent uptake values were 63±5 ± 21-7 units (right

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.50.2.242 on 1 February 1987. Downloaded from http://jnnp.bmj.com/ on September 15, 2023 by guest. Protected by copyright.