Short report

The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease

K JELLINGER

From the Ludwig-Boltzmann Institute of Clinical Neurobiology and Department of Neurology, Lainz-Hospital, Vienna, Austria

SUMMARY Significant loss of neurons in the pedunculopontine nucleus pars compacta (PPNc), a putative cholinergic nucleus involved in modulating somatic motor activities, has been demonstrated in progressive supranuclear palsy (PSP) and Parkinson’s disease but not in Alzheimer’s disease. A morphometric study of this nucleus was performed in two cases of PSP and in a cohort of cases of Parkinson’s disease, Alzheimer’s disease, senile dementia of Alzheimer type (SDAT), and age-matched controls. In PSP a significant 60% neuronal loss in PPNc was associated with neurofibrillary tangles in 40 to 64% of the remaining neurons. In Parkinson’s disease there was a significant decrease in cell numbers and density by 53 and 51%, respectively, with Lewy bodies involving 6 to 39% of all neurons. In Alzheimer’s disease and SDAT, large neurons were reduced by 29 and 33-8%, respectively, with tangles in 9 to 38% of the remaining cells. The selective affection of this putative cholinergic nucleus in PSP and Parkinson’s disease appears to be related to motor dysfunctions in these disorders.

The parabrachial pedunculopontine nucleus (PPN) lying in the ventrolateral part of the caudal mesencephalic tegmentum is separated into two subnuclei: the ventral subnucleus dissipatus (A-8 of the mamilian brain) featured by a relative paucity of cells, and the subnucleus compactus (PPNC) constituted of densely arranged neurones of over 20 µm diameter possessing an excentric nucleolus and peripherally arranged Nissl substance.1 The PPNc is recognised as an important “loop nucleus” of the corpus callosum and is widely integrated into the circuitry of the basal ganglia,2 for it receives inputs from the frontal cortex, internal pallidal segment, zona reticulata nigrae, subthalamic nucleus, ventral tegmental area and central amygdaloid nucleus and has widespread efferents to most of the same subcortical nuclei, to the zona compacta nigrae and striatum.2-6 Its principal projections appear to be to the intralaminar thalamic nuclei, pars compacta nigrae and subthalamic nucleus.3-6 The latter connections, confirmed by electron microscopic autoradiography, appear to be cholinergic, excitatory and asymmetrically bilateral.4-7 This putative cholinergic nucleus, projecting to portions of the neuraxis that modulate somatic motor activities at a cortical level,2 8 lies in a region containing many cholinergic neurons and is thought to represent a “preextrapyramidal centre” and extra-striatal mechanisms for affecting the balance between cholinergic and dopaminergic functions of the basal ganglia.7 Significant loss of neurons in the PPNc has been demonstrated recently in cases of progressive supranuclear palsy (PSP), of Parkinson’s disease, and of Parkinson’s disease combined with Alzheimer’s disease (PD/AD).9-11 In Parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in the cynomolgus monkey overactivity of the PPN has been demonstrated by increased 2-deoxy-glucose uptake.12 We present preliminary
The pedunculopontine nucleus in Parkinson's disease

Table Major clinical and neuropathological data

<table>
<thead>
<tr>
<th>Group</th>
<th>Controls</th>
<th>Parkinson's disease</th>
<th>PSP</th>
<th>Alzheimer's disease</th>
<th>Senile dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N of cases (male/female)</td>
<td>15 (10/5)</td>
<td>14 (6/8)</td>
<td>2 (1/1)</td>
<td>5 (4/1)</td>
<td>17 (7/10)</td>
</tr>
<tr>
<td>Age (years) Mean, SEM</td>
<td>73.7, 3</td>
<td>77.3, 1.6</td>
<td>68</td>
<td>59.4, 1.0</td>
<td>85.5, 1.6</td>
</tr>
<tr>
<td>NPPC % cells:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NFT</td>
<td>< 1%</td>
<td>< 1%</td>
<td>40/64</td>
<td>18-38%</td>
<td>5-22.5%</td>
</tr>
<tr>
<td>Lewy bodies</td>
<td>< 1%</td>
<td>6-39%</td>
<td>0</td>
<td>0</td>
<td>0-5%</td>
</tr>
</tbody>
</table>

NFT = neurofibrillary tangles; NPPC = neuritic plaques; 4 + high density.

data of morphological studies of the PNNPC in a cohort of patients with Parkinson's disease, PSP, Alzheimer's disease and senile dementia of the Alzheimer type (SDAT), and in age-matched controls.

Material and methods

The sample included five groups of patients, the major clinical and neuropathological data of which are given in the table.

(a) Fourteen cases of Parkinson's disease, all except one with mixed tremor, rigidity and akinesia, presenting with a rigid akinetic syndrome; dementia was recorded in five. Neuro-pathology revealed focal damage to the substantia nigra and widespread Lewy bodies throughout the brainstem. Occasional senile plaques and/or neurofibrillary tangles in hippocampus and/or neocortex were seen in seven brains. Numerous Alzheimer lesions in hippocampus were present in four cases, two of which also had numerous plaques and tangles in the neocortex, indicating a combination of Parkinson's disease and SDAT.

(b) Two cases of PSP, presenting with ophthalmoplegia, rigidity and akinesia were pathologically featured by widespread neurofibrillary degeneration (straight tangle type) with neuronal loss and gliosis in several subcortical nuclei, but preservation of the neocortex and hippocampus.

(c) Seventeen cases of SDAT with clinical evidence of dementia were pathologically characterised by numerous senile plaques and tangles in hippocampus and neocortex; most had amyloid angiopathy.

(d) Five cases of Alzheimer's disease with severe dementia of several years duration showed severe Alzheimer changes in hippocampus and neocortex, and cerebral amyloid angiopathy.

(e) Fifteen patients without dementia or other neurological or psychiatric disorders served as controls. There were no neuropathological abnormalities except for a few senile plaques and/or tangles in hippocampus and/or neocortex of some cases.

The PNNPC from each case was sampled at two levels from serially sectioned formalin-fixed, paraffin-embedded blocks of the brainstem cut at 5-7 um stained with cresyl violet, haematoxylin and eosin, Bodian's silver and congo red stains. PNNPC neurons of more than 20 microns with prominent nucleoli and abundant Nissl substance were counted in cresyl violet sections under 400-fold magnification using an ocular micrometer. The area of the PNNPC was calculated by counting the number of fields of 0.53 x 0.75 mm (0.395 sqmm). Lewy bodies and tangles were counted within the same fields. Statistical significance was evaluated by Student's t test.

Results

While in controls the mean number of large neurons in PNNPC was 91.47, (SEM 1.72) with a mean cell density of 58.3, (1.2) cells/mm², in Parkinson's disease the mean neuronal number was 48.5, 1.44 with a mean density of 30.5, (1.2) cells/mm² that is a reduction by 53 and 51.3%, respectively. The two cases of PSP with mean cell numbers of 25 and 48 respectively, showed an average reduction of 60% versus controls. In SDAT; the number of large PNNPC neurons was 65.1, 0.8 and the cell density was 41.5, (0.9)/mm² which corresponds to a reduction by 28.9 and 29%, respectively. In Alzheimer's disease neuronal numbers of 59.4, (0.6) and density of 37.3, (0.7) cells/mm² were reduced by 33.8 and 35.3% of controls (fig 1). In the control group, Lewy bodies and fibrillary tangles were seen in less than 1% of the PNNPC neurons, while in Parkinson's disease Lewy bodies involved between 6 and 39% of the remaining cells, with only very occasional tangles in this nucleus (0-5% of the remaining neurons), which in PSP affected 40 to 64% of the remaining cells. In Alzheimer's disease, the incidence of tangles ranged from 18 to 38% and in SDAT from 5 to 22.5% of the remaining cells, with only very occasional Lewy bodies in both disorders. Obvious astrocytic gliosis was not recognised in either group of disorders. The adjacent mesencephalic trigeminal nucleus showed neither neuronal loss nor any Lewy bodies or tangles in its neurons.
Discussion

Neuronal loss of variable intensity associated with cytoskeletal changes (Lewy bodies, neurofibrillary tangles) have been reported in several subcortical nuclei in both Parkinson's and Alzheimer's diseases.\(^\text{14-20}\) In Parkinson's disease neuronal loss in zona compacta-nigrae ranging from 66 to 85\% is much more severe than in AD/SDAT showing 6\% to 38\% cell depletion. Cell loss in the noradrenergic locus coeruleus in both disorders ranges from 60 to 85\%. In AD/SDAT topographic arrangement of cell loss and its correlation to neuronal depletion and density of neuritic plaques in the temporal cortex suggest retrograde degeneration due to primary cortical damage,\(^\text{19}\) while no such correlation has been observed in Parkinson's disease. In the serotonergic dorsal raphe nucleus neuronal loss in Parkinson's disease averages 42-2\%, but in AD/SDAT shows a wide range from 6\% to 77\% of controls,\(^\text{14,15,18}\) up to 90\% of the remaining neurons showing fibrillary tangles.\(^\text{18}\) Significant cell loss has been reported in the cholinergic nucleus basalis of Meynert in both Parkinson's disease and Alzheimer's disease/SDAT.\(^\text{14,15,17,20,21}\)

Cell depletion in this nucleus is much higher in demented Parkinson's subjects, irrespective of the cortical pathology, where it approaches the values of Alzheimer's disease, than in non-demented Parkinson's disease patients where cholinergic cell reduction is similar to the losses seen in SDAT.\(^\text{14,15,20}\)

Recent studies of the NPPc have demonstrated a significant 49\% to 69\% cell loss in three cases of PSP,\(^\text{10}\) an average cell reduction by 60\% in four cases of Parkinson's disease and of 40\% in four cases of

Fig Number of large neurons (left) and neuronal density/mm\(^2\) in the nucleus tegmenti pedunculopontinus pars compacta.
The pedunculopontine nucleus in Parkinson’s disease

Parkinson’s disease plus Alzheimer’s disease as compared with age matched controls,9 while no significant neuronal depletion was seen in cases of Alzheimer’s disease.10 Lewy bodies were abundant in all cases of Parkinson’s disease and Parkinson’s disease plus Alzheimer’s disease, but infrequent in controls, while neurofibrillary tangles were common in all cases of Parkinson’s disease plus Alzheimer’s disease and Alzheimer’s disease/SDAT.9 10 Similar results were reported in both Parkinson’s disease and PSP.11 In the present series a significant 60% neuronal loss with fibrillary tangles in 40% to 64% of the remaining neurons was seen in two cases of PSP. In Parkinson’s disease there was a significant decrease in neuronal numbers and density by over 50%, with Lewy bodies affecting 6% to 39% of the remaining cells. NPPc neuronal loss averaging 34% and 29%, respectively, was much less severe in Alzheimer’s disease and SDAT. In these disorders, it was accompanied by the occurrence of fibrillary tangles, the incidence of which in NPPc, however, was much less in other subcortical nuclei, for example the dorsal raphe nucleus.18 These data suggest that putative cholinergic neurons of the PPNc are more selectively affected in Parkinson’s disease and PSP, and could be related to disorders of motor performance and co-ordination in these disorders, while in Alzheimer’s disease/SDAT this nucleus involved in somatic motor activities appears to be only mildly affected. Overactivity of the NPPc in experimental MPTP Parkinsonism12 showing rather selective damage to the zona compacta nigrae22 might indicate dysfunctions in the tegmento-nigro-subthalamo-cortical pathways, the pathogenetic factors and clinical significance of which in Parkinson’s disease and PSP are still unknown. In the latter disorder, severe involvement of PPNc has been suggested to contribute to some disorders of movement, sleep-wake cycles and cognition10 that are known to be characteristic in both Parkinson’s disease and PSP. Understanding the mechanisms by which this cholinergic subcortical nucleus is related to motor disturbances and other dysfunctions in Parkinsonism could provide further insight into the pathophysiology of basal ganglia disorders.

References