Dual labelling of circulating CD8 cells in patients with multiple sclerosis

P J HUGHES, P F KIRK, D A S COMPSTON

From the Section of Neurology, University of Wales College of Medicine, Heath Park, Cardiff, UK

SUMMARY Peripheral blood T cell phenotypes have been analysed in serial samples from patients with multiple sclerosis, their unaffected relatives and controls using a panel of antibodies chosen to distinguish T suppressor and activated suppressor cells from other CD8 lymphocytes. Overall, the percentage of Leu 2a cells correlated with alterations in the Leu 2a/15 suppressor sub-population \((r = 0.79, p < 0.001)\). Fewer circulating Leu 2a and Leu 2a/15 positive cells were identified in multiple sclerosis patients than unaffected individuals but there was no alteration in percentage of activated (Leu 2a/DR) CD8 cells. These findings suggest that the fluctuations in CD8 cells, characteristic of patients with multiple sclerosis, are due to alterations in T suppressor phenotype; this may then lower the threshold for activation of other T cell subpopulations.

Two major populations of circulating T lymphocytes can be defined serologically. Leu 2a, OKT5 and OKT8 identify the suppressor/cytotoxic (CD8) subset and Leu 3a, 3b and OKT4 the helper/inducer (CD4) subpopulation. A reduction in number or percentage of OKT5 and T8 cells has been reported\(^1\) but also disclaimed\(^2\) in patients with multiple sclerosis, although results are more consistent using the Leu 2a antibody.\(^3\)-\(^4\)

Monoclonal antibodies can be used singly or in combination to identify less heterogenous lymphocyte populations including those characterised by the presence of activation markers expressed transiently during T cell maturation.\(^5\)-\(^9\) Within the CD8 subset, suppressor and cytotoxic cells can be distinguished using Leu 2a and Leu 15 in combination\(^10\) and activated CD8 cells may be identified by dual labelling with Leu 2a and anti-DR.\(^11\)

Suppressor inducer (CD4: OKT4/2H4 positive) lymphocytes which in turn stimulate the suppressor (CD8: Leu 2a/15) subpopulation are reduced in patients with chronic progressive multiple sclerosis.\(^12\) Impaired T suppressor function correlates with the OKT4/2H4 but not CD8 phenotype\(^13\)-\(^16\); the likely explanations are first that the CD8 antigen is present on cells other than T suppressor lymphocytes, and secondly that non-specific functional suppressor assays involve a complex interaction of B, T helper and suppressor cell responses to plant mitogens.

There is an increase in T cells expressing early and late activation markers in patients with multiple sclerosis;\(^17\)-\(^20\) some of these antigens are present on activated T helper/inducer (CD4) and cytotoxic/suppressor (CD8) lymphocytes whereas the expression of others is not confined to T lymphocytes at all.

In order to define the contribution of fluctuations in suppressor cells to serial changes in the CD8 phenotype, samples cryopreserved at the time of previously reported studies of lymphocyte subpopulations within families\(^21\) have now been investigated by dual monoclonal antibody labelling. Functional and phenotypic correlations have not been made in aliquots of the same samples.

Methods

Unfractionated lymphocytes were obtained from up to 12 samples of peripheral blood taken between 7.30-10.30 am at weekly intervals from each of six patients with clinically definite multiple sclerosis, five cohabitant relatives (four spouses and one sister), four non-cohabitant siblings and seven unrelated normal controls. OKT4 and T8 cells were previously enumerated using fresh lymphocytes by indirect immunofluorescence.\(^22\) At that time 20 \(\times\) 10\(^6\) lymphocytes in 250 \(\mu\)l of foetal calf serum were mixed on ice in round-bottomed freezing tubes with 250 \(\mu\)l of 20% dimethylsulfoxide (DMSO), kept at \(-70^°C\) for up to 16 hours and then stored in liquid nitrogen for up to 9 months.

Stored cells were subsequently thawed rapidly, transferred to 20 ml of medium at 20°C for 20 minutes and resuspended at the concentration of 20 \(\times\) 10\(^4\) per ml. Cell viability was
Dual labelling of circulating CD8 cells in patients with multiple sclerosis

Table 1 Mean lymphocyte subpopulation percentages in multiple sclerosis patients, their unaffected relatives and controls

<table>
<thead>
<tr>
<th></th>
<th>T8</th>
<th>Leu 2a</th>
<th>Leu 2a/15</th>
<th>Leu 2a/DR</th>
<th>T4</th>
<th>Leu 3a/3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple sclerosis patients (n = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohabitants (n = 5)</td>
<td>13.7 + 2.6 (52)</td>
<td>12.7 + 4.3 (34)</td>
<td>4.9 + 2.5 (34)</td>
<td>2.2 + 2.5 (32)</td>
<td>32.5 + 6.3 (51)</td>
<td>25.3 + 9.8 (35)</td>
</tr>
<tr>
<td>Non-cohabitants (n = 4)</td>
<td>15.7 + 1.1 (45)</td>
<td>15.9 + 3.4 (39)</td>
<td>7.9 + 4.4 (37)</td>
<td>2.4 + 0.6 (37)</td>
<td>33.5 + 7.7* (45)</td>
<td>22.9 + 5.6* (40)</td>
</tr>
<tr>
<td>Controls (n = 7)</td>
<td>17.0 + 3.2 (28)</td>
<td>18.1 + 11.4 (25)</td>
<td>9.1 + 7.9 (25)</td>
<td>2.1 + 1.2 (25)</td>
<td>33.5 + 8.0* (28)</td>
<td>20.5 + 6.6* (24)</td>
</tr>
</tbody>
</table>

*+ = p < 0.05. (number of observations).

usually > 80% but the number of cells recovered from a few samples was inadequate for further investigation.

Aliquots containing 1 × 10⁶ cells in 50μl of medium were incubated with 50μl of Leu 2a or Leu 3a/3b (fluorescein labelled; diluted 1:20) and with either 50μl of Leu 15 or anti-DR (phycoerythrin labelled; diluted 1:5 and 1:20 respectively) at 20°C for 6 minutes. After further washing, 500 cells were counted on the basis of their characteristic light scatter profiles by flow cytometry on a Becton Dickinson FACS 440.

Statistics

Results are expressed as a mean and standard deviation; differences between mean values for all observations from each individual within the four groups were compared by Student's t test based on the number of individuals, not observations. Coefficients of correlation between mean values for the different lymphocyte subpopulations were calculated from each participant, irrespective of clinical status.

Results

Our previously reported results demonstrated a reduction in mean percentage of OKT8 cells in multiple sclerosis patients and cohabitant relatives, but not in non-cohabitant siblings or unrelated controls. In the present study the percentage of cryopreserved Leu 2a cells was also reduced in samples from six multiple sclerosis patients and five cohabitant relatives compared with four non-cohabitants and seven controls (table). This reduction in CD8 lymphocytes, defined either by OKT8 or Leu 2a was associated with lower percentages of Leu 2a/15 positive cells in multiple sclerosis patients than cohabitants, non-cohabitants or controls. The Leu 2a/DR subpopulation did not differ between groups. Leu 3a/3b identified a lower percentage of circulating CD4 cells than OKT4. This difference was significant in cohabitant and non-cohabitant relatives but the T4 or Leu 3a/3b phenotype did not differ between groups.

Using all results available from each participant, there was a strong correlation between Leu 2a phenotype and OKT8 positive cells (r = 0.87: p < 0.001); each also correlated with Leu 2a/15 positive cells (r = 0.79: p < 0.001 and r = 0.63: p < 0.01 respectively). The percentage of Leu 3a/3b cells correlated with OKT4 phenotype (r = 0.64, p < 0.01). It may be statistically invalid to treat every sample from each individual separately since there is an a priori expectation of one abnormal result following another. However, a significant correlation between Leu 2a and OKT8 positive cells, and between Leu 2a and Leu 2a/15 phenotype, remained when only the first paired values from each individual were compared (r = 0.73: p < 0.001 and r = 0.47: p < 0.05, respectively); conversely there was no correlation between either Leu 2a or OKT8 and the percentage of Leu 2a/DR positive cells (r = 0.06: p NS, and r = 0.13: p NS respectively).

Despite these correlations, OKT8 Leu 2a Leu 2a/15 and Leu 2a/DR positive cell percentages varied independently in serial studies of normal individuals and with only a small number of participants, it was not possible to define normal ranges. Nevertheless the pattern of changes observed in serial observations of patients and their relatives was consistent with the
conclusion that changes in Leu 2a cells can be attributed mainly to an alteration in the Leu 2a/15 subpopulation. Representative results are illustrated in one patient and his wife (fig). In both, periodic fluctuations in OKT8 cells were unrelated to changes in the Leu 2a population; conversely, variations in Leu 2a phenotype were associated with transient alterations in Leu 2a/15 and Leu/DR cells. In the remaining four families, involving five patients and eight relatives (not shown in figures), Leu 2a and OKT8 cell percentages also varied independently whereas in each individual the periodic alterations in Leu 2a cells were usually matched by fluctuations in percentage of Leu 2a/15 lymphocytes. This trend was less noticeable when comparing Leu 2a and Leu 2a/DR cells.

Discussion

In the present study we have shown that the reduction in circulating Leu 2a cells characteristic of patients with multiple sclerosis correlates with fluctuations in the Leu 2a/15 suppressor cell subset. The study was not designed to reconfirm the observation that circulating CD8 cells are reduced in patients with chronic progressive multiple sclerosis compared with clinically stable cases or unaffected controls. We found that fewer CD8 cells stained with Leu 2a than OKT8 during serial observations in 4/6 patients with multiple sclerosis. It is unlikely that this finding resulted from the use of cryopreserved and fresh cells respectively since Leu 2a and OKT8 identified a similar proportion of cells in samples of peripheral blood from normal controls, which had been handled identically. However, it is possible that the Leu 2a epitope on lymphocytes from multiple sclerosis patients may be especially vulnerable to freezing. Since there is a poor correlation between results obtained using these two antibodies, the possibility arises that Leu 2a and OKT8 recognise different components of the heterogenous CD8 cell population; in the investigation of patients with multiple sclerosis the term CD8 should therefore be supplemented by information on the source of antibody used for analysis.

There was a trend towards finding fewer CD8 cells in cohabitant than non-cohabitant relatives of multiple sclerosis patients or unrelated controls using Leu 2a and OKT8 but this was not matched by alterations in mean numbers of Leu 2a/15 lymphocytes in these unaffected individuals. This discrepancy between CD8 and suppressor (Leu 2a/15) phenotype is consistent with our demonstration, using mitogen stimulation assays, that T-B cell function is impaired in patients but neither group of unaffected relatives. There is a correlation between the percentage of CD8 cells and the percentage of T-B cells in T-cell lymphocyte subsets in relapsing-remitting multiple sclerosis patients, which may lower the threshold for activation of T cells, leading to lymphocytic infiltration of the central nervous system.

References

7. Zaffaroni M, Caputo D, Ghezzi A, Cazzullo CL. T cell subsets in multiple sclerosis: relationships between peripheral blood and
Dual labelling of circulating CD8 cells in patients with multiple sclerosis

