Short report

Dyssynergia cerebellaris myoclonica (Ramsay Hunt syndrome): a condition unrelated to mitochondrial encephalomyopathies

C A TASSINARI, * R MICHELUCCI, * P GENTON, † J F PELLISSIER, † J ROGER †

From the Neurological Clinic, * University of Bologna School of Medicine, Bologna, Italy, Center Saint-Paul, † and Laboratory of Neuropathology, † School of Medicine, Marseille, France

SUMMARY Thirteen patients with dyssynergia cerebellaris myoclonica (Ramsay Hunt syndrome) had full clinical and neurophysiological study as well as muscle biopsy. The patients had action myoclonus, generalised epileptic seizures, and mild cerebellar syndrome. The disease was inherited in an autosomal recessive pattern in five patients, and occurred as isolated cases in the remaining eight patients. The age at onset of symptoms ranged from 6 to 15 years (mean, 10.4 years). The EEG and polygraphic findings included normal background activity in most patients, spontaneous fast generalised spike and wave discharges, photosensitivity, no activation during slow sleep, and vertex and rolandic spikes in REM sleep. Results of muscle biopsy, performed an average of 14 years after onset of the disease, were normal and showed no mitochondrial abnormalities. These findings suggest that Ramsay Hunt syndrome is a condition with distinctive clinical and neurophysiological features and unrelated to mitochondrial encephalomyopathies.

Dyssynergia cerebellaris myoclonica (DCM), or Ramsay Hunt syndrome, is a rare disorder of unknown aetiology characterised by action or intention myoclonus with cerebellar signs and epilepsy. Despite the scarcity of anatomical verification, the most commonly reported pathological change is degeneration of the olivodentatorubral system. The nosological place of DCM is still unclear; Ramsay Hunt syndrome has been classified under spinocerebellar degenerations and referred to as a form of progressive myoclonic epilepsy.

A condition in which action myoclonus and epilepsy were associated with a mitochondrial myopathy, as demonstrated by muscle biopsy, was first described by Spiro et al.7 and Tsoiris et al.8 and subsequently by many others.9-24 This condition, also defined as myoclonic epilepsy with ragged red fibres MERRF,12 was considered to bear many clinical similarities to DCM,2324 or even to account for most or all such cases of DCM.24

This report describes the clinical and neurophysiological study, with muscle biopsy, of 13 patients with DCM. The aim of the study was to verify the existence of abnormal mitochondria in the skeletal muscle of patients with DCM and, from the findings in these patients and a review of the available literature on MERRF, to determine if there are any significant differences between the two conditions.

Patients and results

Thirteen patients with DCM (five females and eight males, aged 13 to 48 years) were studied; four were observed at the Neurological Clinic in Bologna and nine at the Center Saint-Paul in Marseille.

Clinical findings

The disease occurred as isolated cases in eight patients, and five patients had siblings with DCM. None of the parents had DCM. The parents of six patients were consanguineous. Three patients had a positive family history of epilepsy.
Dyssynergia cerebellaris myoclonica: a condition unrelated to mitochondrial encephalomyopathies

The age at onset of the disease ranged from 6 to 15 years (mean, 10-4 years). The first symptoms were epileptic seizures (clonic, four patients; myoclonic, three patients; tonic-clonic, two patients; absences, one patient) in 10 patients, action myoclonus in two patients, and cerebellar symptoms in one patient. In all patients, the complete clinical picture included epileptic seizures (clonic, 12 cases; myoclonic, 11 cases; tonic-clonic, 10 cases; absences, three cases) and action or intention myoclonus.

A mild cerebellar syndrome was present in 11 patients. Other findings included pes cavus (three patients), hypopallaeesthesia of the lower limbs (two patients), and scoliosis (one patient). Mild intellectual impairment was verified in four patients. The results of funduscopic examination were normal. In all patients, the seizures responded to treatment with sodium valproate or benzodiazepines and diminished in frequency or disappeared with evolution of the disease. Myoclonus was improved or unmodified by treatment in six patients and worsened in seven patients. There was slow deterioration of the cerebellar syndrome in four patients. The mild mental defect verified in four cases did not progress during the course of the illness. Intellectual tests were preserved in the remaining patients over a long term follow-up period.

At the time of our observations, which were made an average of 16-9 years (range, 7-5 to 37 years) after the onset of the disease, a 32 year old patient who had been affected for 20 years was bedridden, five patients needed help with activities of daily living, and seven patients were only minimally affected and could live without assistance.

Neurophysiological findings

Waking EEG records. Background activity in the waking EEG was normal in seven patients and moderately slow in six. Spontaneous brief bursts of fast generalised spike-and-wave discharges were recorded in all patients. The paroxysmal abnormalities were increased by intermittent photic stimulation in 11 patients.

Night sleep EEG records. Sleep polygraphic records showed generalised bursts of fast spike-and-wave discharges similar to those observed during wakefulness. During rapid eye movement (REM) sleep, fast polyspikes, localised in the central and vertex regions, appeared in 12 patients. Cyclic organisation of sleep was preserved.

Evoked potentials. Somatosensory evoked potentials were recorded in 10 patients, and the amplitude was increased (up to 50 μV) for the P30 - N20 component in eight patients. High-voltage late components were observed in three of five patients in whom visual evoked potentials were recorded.

Electromyography. Electromyography with determination of motor and sensory conduction velocities was performed in six patients, and the results were all normal.

Pathological findings

Biopsy of muscle (deltoid, four patients; quadriceps femoris, six patients; tibialis anterior, two patients; biceps brachii, one patient) was done in all patients an average of 14-2 years (range, 5-5 to 37 years) after the onset of the disease. Light and electron microscopic examinations of the biopsy specimens did not reveal any significant changes. The results of histochemical analysis of the specimens were also normal. Measurement of enzymes in the mitochondrial respiratory chain in four patients showed no abnormalities. Lafort bodies were not found.

Computed tomography and clinical laboratory findings

Computed tomography (CT) of the skull was performed in nine patients; except for cerebellar atrophy in one, the scans showed no abnormalities. The results of routine blood and urine tests were normal. Repeated measurement of serum lactate and pyruvate yielded normal values. Activity of lysosomal enzymes in white cells was normal, as was excretion of mucopolysaccharides and oligosaccharides in the urine.

Discussion

The most conspicuous clinical features noted in these 13 patients were action myoclonus, generalised epileptic seizures, and a mild, slowly progressive cerebellar syndrome. There was autosomal recessive inheritance in five patients. The disease invariably began in childhood or early adolescence. The associated EEG and polygraphic findings included normal background activity (in seven patients), spontaneous fast generalised spike-and-wave discharges, photosensitivity, no activation during slow sleep, and vertex and Rolandic spikes in REM sleep. The amplitude of somatosensory evoked potentials was very exaggerated, as previously found in DCM.

These clinical and neurophysiological findings, summarised in the table, fit the diagnosis of DCM (Ramsay Hunt syndrome) defined in accordance with the clinical and EEG criteria proposed by Roger et al and Tassinari et al.

Muscle changes have not been reported in Ramsay Hunt syndrome, and muscle biopsy specimens from our patients were normal and did not reveal any mitochondrial abnormalities. In MERRF, however, there is evidence of abnormal mitochondria in skeletal muscle; this recently recognised clinical entity is also characterised by myoclonus, cerebellar syndrome, epilepsy, and a variety of neurological and extraneurological signs.

Berovic et al found mitochondrial myopathy in nine patients (six from the same family) previously diagnosed as having DCM; they stated that “Ramsay Hunt syndrome is no longer a useful diagnostic category” and “it is largely (or) completely accounted for by the mitochondrial encephalomyopathies.”

In the table, the clinical and EEG features of 26 reported cases of MERRF are compared with the findings from our cases of DCM. It is evident that MERRF differs from DCM in the following respects:

1. In MERRF, the inheritance is usually autosomal dominant or maternal, but in many DCM cases, it is autosomal recessive.
2. The age at onset of clinical symptoms is quite variable in MERRF, ranging from early childhood to adulthood; in DCM, it is restricted to childhood or early adolescence.
3. The triad of myoclonus, cerebellar syndrome, and
Table: Clinical and EEG features of dysssnergia cerebellaris myoclonica (DCM) and myoclonic epilepsy with ragged red fibres (MERRF)

<table>
<thead>
<tr>
<th></th>
<th>DCM*</th>
<th>MERRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients:</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>6-15</td>
<td>2-42</td>
</tr>
<tr>
<td>Range</td>
<td>10-4</td>
<td>14-7</td>
</tr>
<tr>
<td>Inheritance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autosomal dominant</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isolated cases</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Myoclonus</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>Cerebellar syndrome</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>Seizures</td>
<td>+ +</td>
<td>+</td>
</tr>
<tr>
<td>Pes cavus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dementia</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deafness</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Muscle weakness</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Muscle atrophy</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Optic atrophy</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Retinitis pigmentosa</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Short stature</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Pyramidal signs</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Increased blood lactate and pyruvate</td>
<td>-</td>
<td>+ +</td>
</tr>
<tr>
<td>Muscle with ragged red fibres</td>
<td>-</td>
<td>+ + +</td>
</tr>
<tr>
<td>CT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral and cerebellar atrophy</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cacifications</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Waking EEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow background activity</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spontaneous generalised fast spike- and-wave discharges</td>
<td>+ +</td>
<td>+</td>
</tr>
<tr>
<td>Slow diffuse activity</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Photosensitivity</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Cases from present series.
†Cases from literature review.7, 15

Key: + + + always present, + + very frequently present, + present in some cases, - not present (not observed in cases reported to date).

generalised epileptic seizures is found in both conditions. In MERRF, however, a constellation of other neurological signs and multisystem abnormalities is usually encountered in various combinations, including the frequent occurrence of deafness, dementia, muscle weakness and atrophy, and ocular abnormalities. It should be emphasised that no case of MERRF has been reported without an additional clinical sign (dementia, deafness, or weakness) associated with the classic triad. In contrast, DCM is devoid of neurological signs other than myoclonus, epilepsy, and cerebellar syndrome.

4. The EEG features of MERRF have been scarcely studied, and only one patient has had a night sleep polygraphic study.15 The background activity, which is normal or slightly abnormal in DCM, is usually slow in MERRF with or without diffuse slow wave discharges (in the theta or delta range). Spontaneous spike-and-wave discharges have been observed in 100% of DCM cases, but in only 19% of MERRF cases. In addition, photosensitivity has been observed in 85% of DCM cases and 27% of MERRF cases.

5. The evolution of these two conditions is also different. Ramsay Hunt syndrome carries a relatively good prognosis with excellent seizure control and very slow progression of the cerebellar syndrome and myoclonus. In our group, only one patient was bedridden, and the remaining 12 were minimally or moderately affected an average of 17 years after the onset of the disease. In MERRF, there is often rapid worsening of symptoms and the early occurrence of serious disability. Seven deaths have been reported in the MERRF group, all related to the disease.9, 10, 12, 16, 19, 21

6. Blood lactate and pyruvate levels are increased in most cases (82%) of MERRF, but are normal in DCM.

7. Results of muscle biopsy in our patients with DCM were normal. Although some rare cases of “mitochondrial encephalomyopathy” having normal muscle histology have been described,28 muscle biopsy demonstrates ragged red fibres and clear mitochondrial abnormalities in all cases of MERRF.

The concept of progressive myoclonic epilepsy covers many distinct clinical entities, including DCM, MERRF, Baltic myoclonic epilepsy, cherry-red spot myoclonus syndrome, Lafora’s disease, and a variety of other metabolic and genetically determined conditions.6 The Marseille study27 and our current observations demonstrate that DCM is a homogeneous condition characterised by onset in childhood, relatively early adolescence, autosomal recessive inheritance, generalised seizures responsive to therapy, progressing in duration and severity, intention or action myoclonus, slowly progressive cerebellar syndrome, and typical EEG and polysomnographic findings. When these features are used as diagnostic criteria, DCM may be easily differentiated from MERRF. MERRF is an often progressive and disabling condition with a wide spectrum of age at onset, autosomal dominant or maternal inheritance, epilepsy, myoclonus, and cerebellar syndrome; it is associated with one or more additional neurological signs and distinctive laboratory and pathological findings. However, our study, while it provides sufficient data to differentiate DCM from MERRF, was not intended to discuss the clinical distinctions, if any, between Ramsay Hunt syndrome and other forms of progressive myoclonic epilepsy of unknown aetiology such as Baltic myoclonus.35

The diagnosis of Ramsay Hunt syndrome has long been considered controversial by many investigators.3 Indeed, some cases labelled Ramsay Hunt syndrome are often heterogeneous with respect to the clinical features (age at onset, genetic origin, associated symptoms) and the anatomical lesions verified at necropsy. In the light of our findings, however, it is possible that some cases of “DCM”, in which the patients have autosomal dominant inheritance,30-33 deafness,34 and other neurological abnormalities35 were true instances of mitochondrial
Dyssynergia cerebellaris myoclonica: a condition unrelated to mitochondrial encephalomyopathies

myopathy, but the pathological findings were not reported. The present study clearly demonstrates that Ramsay Hunt syndrome, as defined by our diagnostic criteria, is a condition unrelated to mitochondrial encephalomyopathies.

We thank Dr N Bresolin, from the University of Milan, for performing the enzyme measurements in the mitochondrial respiratory chain, Drs M Moggio and G Pellegrini, from the University of Milan, for performing the light and electron microscopic study of muscle specimens from four patients, and Mr N Muzzi, from the University of Bologna, for his helpful collaboration in the bibliographic research. We are also indebted to Mrs B J Hessie for her expert assistance in revising the manuscript.

This work was supported by the 40% funds distributed by the Italian Ministry of Education.

References


20 Rigg JE, Schochet SS, Fakade J, et al. Mitochondrial encepha


30 Kreindler A, Crigel I, Pollici I. Clinical and electroencephalographic investigations in myoclonic cerebellar dys


