Figure 1 CT scan of head showing a left parietal enhancing disc shaped lesion.

Figure 2 Abscess with neutrophils and eosinophils around the cut section of parasite. H & E × 40.

Figure 3 Angiostrongylus cantonensis. H & E × 10.

Cerebral angiostrongyliasis usually has an incubation period of two weeks with headache, low-grade fever and meningeal signs as the common presenting features.1 Watts reports five cases of eosinophilic meningitis and episodes with epileptic seizures in one case.2 Schmutzhard et al reported five patients with A. cantonensis meningoencephalitis with one case having bilateral abducens nerve palsy and unilateral papilloedema, with subdural or intracerebral lesions.3 Prommindaraj et al reported ocular angiostrongyliasis.4 Escobar and Nieto described pathological findings of A. cantonensis infection in the human brain and proposed that as the larva dies the inflammatory reaction changes from diffuse eosinophilic meningoencephalitis to a more focal and granulomatous response.5 This case is unique in that the patient presented with focal neurological manifestations without diffuse meningoencephalitis. CT scan revealed a single lesion and histopathology showed an abscess with a live worm.

In India, an enhancing ring or disc lesion in the cerebrum with perilesional oedema is usually considered to be a tuberculoma.6 It is our usual practice to treat these patients with anti-tuberculous drugs, with follow up scans to monitor the evolution of the lesion. Our patient was initially given anti-tuberculous drugs. His condition deteriorated, however, and at follow up eight weeks later a CT scan showed that the lesion still persisted. The diagnosis was therefore revised and excision of the lesion confirmed our diagnosis.

AK PUROHIT
DINAKAR
C SUNDARAM
KS RATNAKAR
Departments of Neurosurgery and Pathology, Nizam’s Institute of Medical Sciences, Panjagutta, Hyderabad 500 482 (AP), India

Correspondence to: Dr Purohit

We thank Professor CRRM Reddy for identifying the morphology of the parasite and Professor K. Subba Rao, NIMS for permitting us to publish the case.

Posterior fossa dermoid cysts and the Klippel-Feil syndrome

Although the Klippel-Feil syndrome as originally described comprised a triad of short neck, painless restriction of neck movements and low posterior hairline due to the congenital fusion of two or more cervical vertebrae, more serious anomalies of the cardiovascular, renal and central nervous systems may co-exist.1 The following case report illustrates another important association which we feel has not received sufficient emphasis.

A 14-year-old girl presented with a 12-month history of bitemporal headache and intermittent vertigo with nausea for two months. From the age of three months she had developed intermittently a soft discharging swelling over her occiput, which had been incised on three occasions in her local casualty department. She had been known to have Klippel-Feil syndrome since the age of four when she presented with a Sprengel’s deformity of the right shoulder.

She had a short webbed neck with a low hairline which extended as far as the C7 vertebral prominence. No occipital swelling was present, but a small punctum was present just above the occision. Neurological examination revealed vertical nystagmus, dysdiadochokinesis, and mirror movements of the hands.

Radiographs of the cervical spine (fig a) showed occipitalisation of the posterior arch of C1 with the anterior elements apparently fused to C2, posterior fusion of C2 and C3, and anterior and posterior fusion of C4-6. A chest radiograph showed fusion of the anterior ends of the first and second ribs on the right, a left hemivertebra at D3 and a scoliosis concave to the right.

CT scan of the skull (fig b) showed a large midline hypodense mass lesion in the posterior cranial fossa with peripheral flecks of calcification, and associated compression of the inferior pons and medulla and anterior displacement of the fourth ventricle. There was moderate dilatation of the upper part of the fourth, third and both lateral ventricles, and a small midline defect between the lateral ventricles and the occipital bone with adjacent thickening.

Appearances following the injection of intravenous contrast were unchanged.

At operation she was seen to have a tract with thick walls which ran inferiorly through the occipital bone into a large dermoid cyst which filled the cisterna magna, causing upward displacement of the cerebellar hemispheres. The posterior arch of C1 was absent.

The cyst was opened and decompressed. A portion of the cyst capsule was adherent to the upper spinal cord and medulla and was not removed. Histologically the cyst capsule was lined with stratified squamous epithelium. The cyst contained hair and scattered foci of calcification. The patient had no complications from surgery and remains well.

Congenital fusion of the cervical vertebrae is due to failure of normal segmentation of the cervical somites during the third to eighth week of gestation. Similarly, dermoid cysts originate during the third to fifth week, when cleavage of the neuroectoderm from the epithelial ectoderm along the mid-dorsal aspect of the embryo may be incomplete. The resultant persistent cutaneous defect may extend from the skin into the substance or central canal of the central nervous system, and expand into a cyst containing sebaceous material, hair and epidermal debris.2 Posterior fossa dermoids may present with symptoms and signs of a mass lesion or with staphylococcal meningitis.3 The pathway of infection is via the dermal sinus which may be seen as a small punctum or dimple over the occiput.

We are aware of four previously reported cases of posterior cranial fossa dermoid cysts associated with cervical fusion anomalies.4,5,6 Given the rarity of both Klippel-Feil syndrome and intracranial dermoid cysts, the association is probably significant, but not
commented upon in reviews of either condition and may well be under recognised. In view of the complications of these cysts, early recognition is important. Posterior cranial fossa dermoids should be added to the list of congenital abnormalities which must be sought in patients with Klippel-Feil syndrome.

W DICKEY
SA HAWKINS
Department of Neurology
DH KIRKPATRICK
CS MCKINSTRY
Department of Neuroradiology
WJ GRAY
Department of Neurosurgery
Royal Victoria Hospital,
Grosvenor Road, Belfast BT12 6BA

Visual failure following subarachnoid haemorrhage from rupture of an anterior communicating artery aneurysm

Subarachnoid haemorrhage secondary to rupture of an intracranial aneurysm may lead to a wide spectrum of neurological disturbances. Although visual loss may occur, complete and permanent amnesia is unusual unless associated with a large anterior communicating artery aneurysm. We report a case of total blindness with only minimal unilateral recovery following rupture of a small anterior communicating artery aneurysm which was associated with a documented period of reduction in global cerebral blood flow.

A previously healthy 56 year old woman was admitted to hospital following the sudden onset of severe occipital headache associated with dizziness, vomiting and neck stiffness. She was alert and orientated with no focal neurological signs, and both visual fields and acuities were normal. Lumbar puncture revealed uniformly bloodstained cerebrospinal fluid at a pressure of 18-5 cm. She was subsequently referred for neuroradiological assessment.

The following day she became drowsy although remaining orientated and otherwise neurologically intact. Computerised tomography showed diffuse blood interhemispherically and in the sylvian fissures with no aneurysmal mass or clot visible (fig 1a). On the fifth day, four vessel angiography revealed an anterior communicating artery aneurysm filling from the right and measuring 12 x 8 mm projecting down and forwards (fig 1b).

The cerebral blood flow was measured intermittently throughout the admission using a radionuclide technique with deconvolutional analysis. On the fifth day after the presenting haemorrhage this showed no regional derangement but a global reduction to 615 mls/minute (normal > 875 mls/minute).

On the sixth day she became increasingly drowsy and disorientated with the right pupil becoming dilated and transiently unreactive to light. A repeat CT scan showed absorption of the diffuse blood and a clot was seen. The cerebral blood flow had returned to 1246 mls/minute with no regional disturbance.

The situation remained static over the subsequent days as did the cerebral blood flow and the CT scan appearances, and on the thirteenth day she had aneurysm surgery. A periperal approach was used and the aneurysm, parent vessels and optical apparatus were clearly displayed. The size of the aneurysm was in accordance with the angiographic findings. No blood clot was seen and there was no direct compression of the anterior optic pathways. The aneurysm was controlled with a single Sugita clip which was left lying clear of the optic chiasm.

She made a prompt recovery although remained mildly disorientated and with no change in her visual disturbance. Subsequent follow up at one year showed an improvement in the left visual acuity to 6/18 although the field remained restricted to a small central patch and there was complete blindness of the right eye.

Anterior communicating artery aneurysms, although close to the anterior visual pathways, rarely produce visual