commented upon in reviews of either condition\(^1\) and may well be under recognised. In view of the complications of these cysts, early recognition is important. Posterior cranial fossa dermoids should be added to the list of congenital abnormalities which must be sought in patients with Klippel-Feil syndrome.

W DICKEY
SA HAWKINS
Department of Neurology
DH KIRKPATRICK
CS MCKINSTRY
Department of Neuroradiology
WJ GRAY
Department of Neurosurgery
Royal Victoria Hospital,
Grosvenor Road, Belfast BT12 6BA

Visual failure following subarachnoid haemorrhage from rupture of an anterior communicating artery aneurysm

Subarachnoid haemorrhage secondary to rupture of an intracranial aneurysm may lead to a wide spectrum of neurological disturbances. Although visual loss may occur, complete and permanent amaurosis is unusual unless associated with a large anterior communicating artery aneurysm. We report a case of total blindness with only minimal unilateral recovery following rupture of a small anterior communicating artery aneurysm which was associated with a documented period of reduction in global cerebral blood flow.

A previously healthy 56 year old woman was admitted to hospital following the sudden onset of severe occipital headache associated with dizziness, vomiting and neck stiffness. She was alert and orientated with no focal neurological signs, and both visual fields and acuities were normal. Lumbar puncture revealed uniformly bloodstained cerebrospinal fluid at a pressure of 18-5 cm. She was subsequently referred for neurosurgical assessment.

The following day she became drowsy although remaining orientated and otherwise neurologically intact. Computerised tomography showed diffuse blood interhemispherically and in the sylvian fissures with no aneurysmal mass or clot visible (fig 1a). On the fifth day, four vessel angiography revealed an anterior communicating artery aneurysm filling from the right and measuring 12 × 8 mm projecting down and forwards (fig 1b).

The cerebral blood flow was measured intermittently throughout the admission using a radionuclide technique with deconvolutional analysis.\(^1\) On the fifth day after the presenting haemorrhage this showed no regional derangement but a global reduction to 615 mls/minute (normal > 875 mls/minute).

On the sixth day she became increasingly drowsy and disorientated with the right pupil becoming dilated and transiently unreactive to light. A repeat CT scan showed absorption of the diffuse blood and an associated persistent hydrocephalus, a clot, or an aneurysmal mass. Her deterioration was therefore attributed to a worsening of her vasospasm. Over the subsequent four days she became increasingly alert, although remaining disorientated in time and place. At this point she began to complain of blindness.

Ophthalmological examination revealed there to be no perception of light in the right eye and only minimal in the left. The right optic disc was pale and there was mild macular oedema bilaterally. There was a right afferent pupillary defect. The CT scan was now normal and the global cerebral blood flow had returned to 1246 mls/minute with no regional disturbance.

The situation remained static over the subsequent days as did the cerebral blood flow and the CT scan appearances, and on the thirteenth day she had aneurysm surgery. A perinatal approach was used and the aneurysm, parent vessels and optic apparatus were clearly displayed. The size of the aneurysm was in accordance with the angiographic findings. No blood clot was seen and there was no direct compression of the anterior optic pathways. The aneurysm was controlled with a single Sugita clip which was left lying clear of the optic chiasm.

She made a prompt recovery although remained mildly disorientated and with no change in her visual disturbance. Subsequent follow up at one year showed an improvement in the left visual acuity to 6/18 although the field remained restricted to a small central patch and there was complete blindness of the right eye.

Anterior communicating artery aneurysms, although close to the anterior visual pathways, rarely produce visual

Figure 1a CT scan on second day showing diffuse blood interhemispherically. 1b Angiogram showing anterior communicating artery aneurysm (12 × 8 mm).
Hemifacial spasm due to pontine infarction

Currently, hemifacial spasm (HFS) is thought to be due to a compression of the facial nerve at the root exit zone by blood vessels.\(^1\) Compression by tumour, aneurysm or arteriovenous malformation has also been noted. We report a case probably due to a small infarct in the pons.

A 20-year-old man, known to be hypertensive for 15 years, presented with a two-year history of left hemifacial spasm. At the age of forty-six, he had been admitted for a transient ischaemic episode probably in the right internal carotid territory. He recovered, but two years later, represented with a minor right hemiparesis and a transient left facial weakness. Two weeks later, he noted slight fluctuation of the lower eyelid which gradually increased in frequency and severity. The left hemifacial spasm was tonic, involved the orbicularis oculi, orbicularis oris and the platysma and was aggravated by light and emotional stress. The left rim reflexes were brisk. Therapy with botulinum toxin was effective.

The brainstem evoked potentials were impaired centrally on the left. Six months after the onset of the HSF, a blink reflex study\(^2\) showed normal R1 (early component) latencies on both sides. The latencies of R2 (the late ipsilateral component) and R2c (the late contralateral component) were shorter on the left (28.7 and 30.1 ms) than on the right (33.4 and 35.1 ms) (control subjects: 33.2 ± 2.7 and 34.8 ± 2.9). With the paired stimuli technique, the R2 and R2c responses were obtained when the interstimulus interval was decreased to 100 ms on the left and to 200 ms on the right. In the control subjects, the inhibition of the R2 response was complete when the interstimuli interval decreased below 250 ms. The CT scan showed mild sub-cortical atrophy. MRI demonstrated an ecstatic basal arterior and decreased signal on the T1-weighted MRI scan and increased intensity signal on the T2-weighted MRI scan in the right centrum ovale and in a small area just above and internal to the left facial nucleus (fig), suggesting a small infarct in the left pons.

To our knowledge, HFS due to a lacunar infarct has never been reported. The onset a few weeks after a regressive hemiparesis and the investigations support this view. The pathogenesis of HFS remains unclear. The ephaptic transmission hypothesis,\(^3\) due to a compression by a blood vessel on the root entry zone, is widely popular. Our case agrees with the claim that the physiological abnormality is situated in the facial nucleus area and that signs of HFS are caused by hyperexcitability of the facial nucleus.\(^4\) The results of the blink reflex of our patient, according to the study by Valls-Sole and Tolosa,\(^5\) suggest an enhanced excitability of facial motor neurones and of those brainstem interneurons that mediate the blink reflex pathway. In our case, this hyperexcitability might not be due to antidromic impulses from compression of the root entry zone,\(^6\) but to a loss of inhibitory impulses from the brainstem, due to the infarct in the pons.

Susamethionin is contraindicated in the Guillain–Barré syndrome

Susamethionin induced hyperkalaemia has been described in a variety of disorders.\(^1\) Ferguson et al\(^2\) described four patients with chylothorax or with pulmonary edema who developed life-threatening arrhythmias following susamethionin administration. The presumed cause was susamethionin induced hyperkalaemia although this was not documented in their report. We have recently seen a patient with relapsing Guillain–Barré syndrome who developed severe ventricular arrhythmia secondary to a documented susamethionin induced hyperkalaemia. The potential danger of the use of susamethionin needs to be emphasized in the neurological literature.

A 51-year-old man was admitted with a two week history of tingling in his hands and feet and progressive weakness in his arms and legs. These symptoms had begun one week after a flu-like illness. Examination revealed a proximal muscle weakness with depressed deep tendon reflexes and reduced sensation. Cerebrospinal fluid examination was normal but nerve conduction studies showed evidence of a demyelinating neuropathy. A diagnosis of Guillain–Barré syndrome was made and he was treated with plasma exchange with significant improvement over the following ten days. He was discharged but was readmitted two months later with an exacerbation of his symptoms.

Examination revealed severe weakness in his arms and legs, absent deep tendon reflexes, bilateral mild facial weakness, mild dysphagia and dysarthria. Forced vital capacity was two liters. He was treated with nasogastric feeding and daily plasmapheresis without any improvement over the following ten days. On day 11 because of deteriorating pulmonary function, it was decided to electively ventilate him. Before ventilation, there was a sinus tachycardia of 125/min but no other evidence of autonomic dysfunction. The arterial partial pressure of oxygen was normal and he was given 100% oxygen for three minutes before the procedure. Anaesthesia was induced with thiopentone and he was then paralysed with susamethionin.

Immediately after the susamethionin was given and before intubation he developed severe ventricular tachycardia followed by a cardiac arrest. Cardio-pulmonary resuscitation was