All these variables except number 3 determine the amount and rate of transfer of energy through the skin to the thermal receptors. The standardisation of this energy transfer is a basic prerequisite for techniques of thermal threshold measurement. Their failure to control these variables invalidates any conclusions on the reliability or otherwise of a single component, namely the psychophysical aspect, of the techniques.

In addition to the technical difficulty the authors choose their subjects further compounds the problem. In diabetic patients thermal thresholds and other parameters of nerve function vary with blood glucose levels,1 implying a variable variable.

Their definition of "static" and "dynamic" methods of application of thermal stimulation is misconceived; dynamic stimuli are applied in both techniques (for example, in the Sensoptek method, the temperature of the thermal receptors will alter with time when a thermode of different temperature is applied to the skin surface). The authors' statement, in the discussion, that differences between these two techniques are due to the nature of the thermal (static versus dynamic) has no conceptual or rational basis.

In conclusion, the authors have not assessed the merit of the two psychophysical procedures, rather they have compared two techniques for thermal threshold testing, which incorporate among many other variables, two different psychophysical procedures. This conclusion as to the efficiency or otherwise of the psychophysical aspect of the two techniques is invalid.

GORAN A JAMAL
Department of Neurology
STIG HANSEN
West of Scotland Health Boards,
Department of Clinical Physics and Bioengineering
JOHN P BALLANTYNE
Department of Neurology,
Institute of Neurological Sciences,
Glasgow


Levy et al reply: Dr Jamal and his colleagues argue that we are unable to comment on the relative advantages of the two algorithms used for testing thermal sensation as we did not control for a number of confounding variables. The rate of heat transfer through skin. This was not the aim of our study; we set out to compare, in a routine clinical setting, two commercially available methods. The algorithms used were one of many differences between the two methods. We simply made the point that in screening studies the choice of a suitable apparatus need not be determined by the psychophysical basis of the test; this is evident from the similar coefficients of variation of all comparable methods.

Dr Jamal's long excursion into the factors influencing transfer of thermal energy is irrelevant since control of stimulus-related factors other than skin temperature and site would have materially altered the methods from those which are commercially available, and does not support our proposition that precision and reproducibility are related neither to the choice of apparatus nor to the algorithm used. It is our contention that the high variability of all clinical psychophysical methods owes more to "central processing" than to the standardised presentation of the stimulus.1 Our experience with the Glasgow thermal testing method (as used in the Medelec instrument) showed that it was more reproducible than the other method, with a finding which is at variance with Dr Jamal's claim of "negligible" intraintividual variability.

Some of the technical points raised by Dr Jamal apply equally to both methods, so we are unclear how they would affect a comparative study (for example, the surface skin temperature, the lack of calibration of heat transfer at the thermode, the thermode application pressure, and the fact that both methods involve application of uncontrolled tactile stimuli). As to the question of thermal neutrality, Kesslerh 1976) found that it could be achieved over a wide range of temperatures, 25-37°C; Dr Jamal's advocacy of the use of a basal temperature of 35°C is therefore arbitrary and in addition quite impractical and time-consuming to achieve in diabetic patients, many of whom have peripheral small- and large-vessel disease. The criticism of our use of diabetic patients on the basis of the known effects of ambient blood glucose levels on nerve function is misplaced in a paper devoted specifically to a clinical study of diabetic patients. In addition, in a large group comparison, the effects of blood glucose variation can also be discounted.

A study comparing algorithms alone with control of all stimulus-related factors has yet to be done and remains a formidable challenge. We are yet to be convinced that strict attention to details of presentation of the thermal stimulus is relevant to the testing of thermal sensation in untrained subjects in clinical settings.

DAVID LEVY
RALPH ABRAHAM
GORDON REID
Department of Diabetes and Endocrinology,
Central Middlesex Hospital,
London NW10 7NS

Responses to temperature in primary hypothyroidism

Using standard neurophysiological criteria Beghi et al1 made a definite diagnosis of polynuropathy in 72% of 39 consecutive outpatients with primary hypothyroidism. They took care to maintain the temperature at 32-34°C throughout these studies, but do not comment upon core temperatures.

It is well recognised that hypothyroid patients may be hypothermic.2 In 1963 we found similar abnormal peripheral nerve conduction in hypothyroid patients.3 We also corrected skin temperature in these studies. Central conduction velocity in the visual pathways, represented by latency of the visual evoked potential, was also slow. These abnormalities were reversed by thyroxine. However, we also demonstrated that correction of hypothermia by central warming led to a further improvement of both of these neurophysiological parameters in untreated patients.

Beghi et al state that using physiological criteria the prevalence of polyneuropathy in hypothyroidism is 71%.4 However, recent data suggest, however, that these abnormal conduction velocities are, in many cases, appropriate physiological responses to a reduced core temperature rather than due to pathology of the peripheral nerve.5-7

RJ ABBOTT
BP O'MALLEY
Leicester Royal Infirmary
Leicester LE1 5SW

Management of intraventricular haemorrhage secondary to ruptured arteriovenous malformation in a child with von Willebrand's disease

The recent report by Osenbach et al8 about a 13 year old girl with von Willebrand's disease and an intracranial arteriovenous malformation raises some important issues.

Their patient developed intraventricular and subarachnoid haemorrhage following minor trauma. Although a bleeding diathesis was diagnosed, a structural vascular lesion was suspected and subsequently confirmed by angiography. The occurrence of an arteriovenous malformation in a patient with von Willebrand's disease is of interest in view of the possible association of this bleeding disorder with various cardiovascular abnormalities, including mural valve prolapse,2 arterial aneurysms,3 gastrointestinal angiodysplasias,4 and telangiectasias.5

It has been suggested that this association represents an underlying mesenchymal disorder of von Willebrand's disease, resembling the heritable connective tissue disorders.6 Abnormalities of the mesenchymal extracellular matrix may be the common ground of, among others, von Willebrand's disease, Ehlers-Danlos syndrome, polycystic

3 Abbott RJ, O'Malley BP, Barnett DB, Timson L, Rosenthal FD. Central and peripheral nerve conduction in thyroid dysfunction: the influence of L thyroxine therapy compared with warming upon the conduction abnormalities of primary hypothyroidism. Clinical Science 1983;64:617-22.
6 Abbott RJ, O'Malley BP, Barnett DB, Timson L, Rosenthal FD. Central and peripheral nerve conduction in thyroid dysfunction: the influence of L thyroxine therapy compared with warming upon the conduction abnormalities of primary hypothyroidism. Clinical Science 1983;64:617-22.

Management of intraventricular haemorrhage secondary to ruptured arteriovenous malformation in a child with von Willebrand's disease

The recent report by Osenbach et al8 about a 13 year old girl with von Willebrand's disease and an intracranial arteriovenous malformation raises some important issues.

Their patient developed intraventricular and subarachnoid haemorrhage following minor trauma. Although a bleeding diathesis was diagnosed, a structural vascular lesion was suspected and subsequently confirmed by angiography. The occurrence of an arteriovenous malformation in a patient with von Willebrand's disease is of interest in view of the possible association of this bleeding disorder with various cardiovascular abnormalities, including mural valve prolapse,2 arterial aneurysms,3 gastrointestinal angiodysplasias,4 and telangiectasias.5

It has been suggested that this association represents an underlying mesenchymal disorder of von Willebrand's disease, resembling the heritable connective tissue disorders.6 Abnormalities of the mesenchymal extracellular matrix may be the common ground of, among others, von Willebrand's disease, Ehlers-Danlos syndrome, polycystic
kidney disease, mitral valve prolapse, and certain (cerebro) vascular anomalies."

The possibility that von Willebrand's disease is a myocardial or connective tissue disorder enforces the plea made by Dr Olsenbach and his colleagues that structural vascular lesions should be ruled out in all patients with von Willebrand's disease who develop intracerebral hemorrhage upon minor trauma.

Olsenbach et al's patient had successful surgical extirpation of the lesion after two weeks of emergency therapy. Administration of the synthetic vasopressin analogue 1-desamino [8-D-arginine] vasopressin (DDAVP) may have been considered in their patient with type I von Willebrand's disease. This type of von Willebrand's disease is characterised by decreased plasma levels of qualitatively normal von Willebrand factor: antigen (vWF:ag), vWF:ag strongly promotes platelet- vessel wall interaction. DDAVP has been shown to stimulate the release of factor VIII and vWF:ag, shorten or normalise bleeding time, and provide surgical haemostasis in patients with von Willebrand's disease and other bleeding disorders. The drug is administered at doses of 0·3 to 0·4 μg/kg body weight by intravenous infusion over 20 minutes. DDAVP was approved by the United States Food and Drug Administration in 1984 for the treatment of the haemostatic defect of von Willebrand's disease. After an adequate response to the drug has been shown before surgery, DDAVP is considered the prophylactic therapy for patients with type I von Willebrand's disease undergoing surgery. Endogenous vWF:ag released by DDAVP into plasma has been shown to be haemostatically equivalent to exogenous vWF infused with plasma concentrates, allowing safe performance of surgical procedures. Moreover, prolonged bleeding time in patients with severe von Willebrand's disease can be reversed by infusion of cryoprecipitate, be further shortened by DDAVP administration.

Treatment with DDAVP avoids the risks associated with the administration of plasma derived products, for example, viral transmission and allergic reactions. DDAVP administration is associated with very few adverse effects. Mild facial flushing, probably caused by exaggerated constriction of the skin, is most frequently encountered. Other less common side effects are mild and transient headaches, a 10% increase in heart rate, and minor decreases in blood pressure. These reactions can easily be attenuated by slowing the rate of DDAVP infusion. DDAVP administration can be repeated at intervals of 12 to 24 hours although some patients treated with this drug at closely spaced intervals may become progressively unresponsive over a period of approximately five days.

Wouter J Schievink, Marcel Mlevy, Department of Neurology and Centre for Thrombosis, Haemostasis, and Atherosclerosis Research, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands


BOOK REVIEWS


We doctors love names, and the more confusing and meaningless the better. In the past we could keep patients, lay people, junior staff, and even the public confused by all names that have taken on a totally new life. Speaking as a Consultant Neurological Pathophysiologist with neuroanatomical undertones and an interest in neurological rehabilitation and a working day of neuro-epileptology, neuro-neurology, neuro-psychiatry, neuro-genetics, neuro-dynia and neuro-everything else, I wish this excellent book—which was originally called (or, as the editors charmingly put it, "described by the appellation") "Neurological Patho-

physiology—and now called "Neurobiology of Disease" and has first class introductions of normal functioning systems—was called "Neurology" (ie that branch of science and medicine which deals with the nervous system, both normal and in disease), or is this wish in early manifestations of neuro-dementia representing a loss of neuro-adaptive behaviour, and neuro-intelligence?

The Editors of this book have brought together eminent contributors who have, together with the Editors, provided us with the best possible overview of the most readable and worthwhile introductions to neurology on sale today.

The book, in 2 sections, dealing with functional and anatomical systems, and disease processes, and is successful in providing both an introduction to "the scientific basis of neurology" for medical students and "the expression of fundamental mechanisms and neuro-adaptive systems in neurobiology, (ie it provides an introduction—an excellent introduction—to the study of neurology). The first part, entitled "Functional and Anatomical Systems" consists of 12 chapters dealing with normal and demyelinated axons, peripheral nerve, neuromuscular junction, muscle, the somatosensory system and pain, the auditory system, the visual system, eye movements and vestibular system, CNS, peripheral nervous system, cardiovascular system, cerebrospinal fluid, sensory nerves, sensation and nervous system.