Spontaneous intracerebral haemorrhage

The increased use of the CT scanner in the investigation of patients with cerebrovascular disease has led to more frequent recognition of strokes caused by intracerebral haemorrhage (ICH). The diagnosis is being made at both extremes of the clinical spectrum. At one end are patients in coma with an extremely poor prognosis who, in the past, would have been considered on clinical grounds to have an intracerebral haemorrhage. At the other are patients with only minor focal neurological deficits, who were previously regarded as having suffered an ischaemic episode and therefore were not investigated by CT scanning.

The inaccuracy of diagnosis in the past is one reason that the choice of treatment remains very controversial. The debate should be advanced by the changing use of CT and the greater awareness of the smaller lesion. Previous trials of surgical treatment, even when randomised and controlled, have failed to match patient groups for the size of the clot and have resulted in further confusion. Any form of treatment is likely to be more successful with smaller haemorrhages. Unnecessary surgical evacuation of small clots may be followed by a good result, while the outcome of surgery for very large lesions in deeply comatose patients will be poor.

Intracerebral haemorrhage is relatively common (20 per 100 000 per year) and, with subarachnoid haemorrhage (10 per 100 000 per year), accounts for 15% of all strokes. While there are now more than 137 CT scanners in the United Kingdom, their distribution is very uneven, so that confirmation of the diagnosis on CT scan is likely to vary according to local practice. Intracerebral haemorrhages are now being diagnosed with magnetic resonance imaging.

Two kinds of decision are required in a patient with an intracerebral haemorrhage: first, how to manage the haematoma, and second, how to prevent rebleeding. The need for measures to prevent rebleeding depends upon aetiology, which is usually clarified by angiography. The prevention of rebleeding is not considered here, but is obviously of great importance, and often influences the management of the acute haematoma.

Aetiology

Hypertension is the most common cause of intracerebral haemorrhage, and its control is probably the main factor responsible for the decreasing incidence of stroke. Anticoagulation, platelet and coagulation disorders are still common causes of haemorrhage in patients presenting in neurosurgical units. Other causes of spontaneous haemorrhage include the abuse of drugs, particularly those which induce hypertension, and acute hypertension in pregnancy and childhood. It should never be forgotten that an intracerebral haemorrhage may be the result of a ruptured berry aneurysm. The differentiation of a subarachnoid haemorrhage from an intracerebral haemorrhage is not always possible on clinical grounds alone, and indeed the lesions often coexist on CT scanning. Pasquale described 309 cases of ICH and showed that the site of the haematoma may help in pointing to the likelihood of an aneurysm, although this is less reliable with a large haematoma. Arteriovenous malformations are more likely to present with an intracerebral haemorrhage than with a subarachnoid haemorrhage, and should always be considered as a cause, particularly in younger people. Of the tumours that cause intracerebral haemorrhage, metastatic melanoma is one of the commonest.

Pathophysiology

The great majority of haematomas result from rupture of an artery or arteriole and therefore the pressure within the haematoma is initially identical to arterial blood pressure. This increase in pressure causes compression of the surrounding brain parenchyma with resulting ischaemia. Around any haematoma there is an area of complete ischaemia surrounded by an area of oligaemia which is analogous to the penumbra of occlusive stroke. Experimental studies have indicated that the area of ischaemia may be much larger than the haematoma itself. The ischaemia is partly the result of mechanical compression of the surrounding microcirculation, although the vasospastic properties of blood probably also play a role. The release of "toxins" from blood within the haematoma may further aggravate the ischaemia. It has also become clear that rebleeding is associated with a worse prognosis. The damage which may occur around the haematoma may therefore be focal, largely as a result of ischaemia, or global, as a result of reduction in the cerebral perfusion pressure (CPP) which occurs mainly because of rising intracranial pressure. Cerebral perfusion pressure may also fall from the ill-advised treatment of reactive hypertension, particularly if it is due to a Cushing response.

After the initial ischaemic episode, the marginal zone around the haematoma may become oedematous and this in turn may further elevate the intracranial pressure. The initial factors responsible for oedema include the release of arachidonic acid and free radicals. A large number of other agents may be mediators of the brain oedema which surrounds these lesions, and different agents may exert their effects at different times. Recent experimental evidence has shown that there is an immune component to the pathogenesis of this oedema. It is now recognised that there is a rapid rise in excitatory amino acids including glutamate. Kinins and other proteins including...
putresine, and leukotrienes may cause further extension of the oedema. Ultimately, neuronal death will be the result of an influx of calcium. It is treatment of this cascade of events in the marginal zone which is most likely to result in clinical benefit, and a large number of agents have been tried experimentally. Agents with therapeutic potential include the use of calcium antagonists, NMDA receptor blockers (competitive and non-competitive), superoxide dismutase, steroids and possibly immunosuppressive agents. At present clinical trials with these agents have not been undertaken in patients with ICH. Their value in the treatment of patients must therefore remain speculative.

Clinical features
The clinical features of spontaneous intracranial haemorrhage are well known. They can be divided into two syndromes: the sudden onset of elevated intracranial pressure, and the development of focal neurological signs, which are appropriate to the site of clot.

Epilepsy may be an early or late complication of intracerebral haemorrhage. It is more common with lobar haemorrhage than with deep seated or basal ganglia haemorrhage. The percentage of patients that develop epilepsy with lobar haemorrhage has been reported to be as high as 62% compared with the average of 2.5% for a series of 1402 cases.18

Treatment
Treatment of the haematoma itself has not been well evaluated in formally controlled trials; this is the consequence of the difficulty of finding comparative groups of well-matched but untreated patients. Opinions are therefore divided about the need for surgical treatment; some being enthusiastic19,20 but others less so.21 Kann22 has reviewed the results of surgical and medical treatment in a large number of patients from Japan and agrees that the treatment remains controversial.

The features of patients with an ICH vary widely and it is not possible to generalise about treatment except at each end of the spectrum. Few neurosurgeons would doubt that delayed deterioration in a young patient with a subcortical haematoma is a clear indication for surgical evacuation whereas most neurosurgeons would not contemplate the evacuation of a large dominant hemisphere haematoma in an elderly patient who has been in coma with fixed dilated pupils from the outset. The real dilemma, which involves the greatest number of patients, applies to the group between these two extremes. Sakai23 has suggested that surgical evacuation should be reserved for those patients with coma scores of between six and eight, once again without proper comparison with a control group. McKissock's original study24 indicated that there was no overall benefit from surgery, with the results of the surgically treated group being slightly worse than in the medically treated group. Volpin et al25 related the outcomes to size, and indicated that lesions larger than 85 ml were almost always fatal, while survival was more likely with surgical evacuation in haematomas of about 50 ml volume on CT scan. Kann22 reported 459 patients and felt that overall, there was no difference between surgically and medically treated patients. Results tended to be better with more laterally situated lesions and if surgical treatment was undertaken within six hours of the ictus. If one looked at the ultimate effect on activities of daily living, however, there was no advantage in surgical treatment. Juvela et al26 reported the results of a prospective randomised controlled study, and showed no benefit from surgical treatment.

Special types of haematoma
a) Pontine haemorrhage
Pontine haemorrhage is seldom associated with elevated ICP unless there is accompanying hydrocephalus. The outcome is related to the size of the haematoma, with bilateral pontine haematomas being almost universally fatal.27 The subject was reviewed by Ochiai et al28 and there are some enthusiasts for surgical treatment.29

b) Cerebellar haemorrhage
As with pontine haemorrhage, the prognosis is related to the severity of the haemorrhage, with patients in coma being less likely to survive.30 The prognosis may be related to size and to obliteration of basal cisterns. Patients with complete obliteration of the basal cisterns are unlikely to survive, while those with open cisterns have a better prognosis whatever the form of treatment.31 Stereotaxic aspiration of cerebellar haematomas has been described32 and the subject has been reviewed by a number of authors.33,34 It was thought that the surgical treatment of cerebellar haemorrhage was often successful but this has not been the subject of rigorous controlled investigation.35-37

c) Chronic encapsulated haematoma
Attention has recently been drawn to the presence of chronic encapsulated intracerebral haematomas.38,39 Although these lesions are presumably the late result of a healing process, some may undergo delayed expansion. Surgical aspiration is likely to be successful in those cases undergoing late deterioration.

Current and future developments
Alternatives to conventional medical and surgical methods of management of ICH are being proposed. There are an increasing number of reports of surgical treatment by stereotaxic aspiration30-36 instead of "open" evacuation. The use of urokinase to promote liquification of the clot before aspiration has also been proposed.47 The first prospective randomised controlled study to provide evidence that surgical treatment was superior to medical treatment came from Auer et al48 who reported a mortality of 46% after endoscopic aspiration compared with a mortality of 70% after medical treatment. The high mortality in the medically treated group emphasises the importance of careful matching of patients. Whether these results will be replicated remains to be determined; endoscopy is not in routine use in most neurosurgical units.

Ultimately, progress in management of ICH will depend upon better understanding of the pathophysiological mechanisms leading to damage. ICP measurement in patients with a traumatic intracerebral haematoma predicts the likelihood of subsequent deterioration49 but it is done much less often in spontaneous haematomas. The studies reported to date are largely anecdotal and do not permit a definite statement on the value of ICP monitoring.50,51 There are differences between traumatic and spontaneous haematomas, for example, there is more oedema around a traumatic haematoma52 but also there are many similarities. Lessons learnt about the management of traumatic intracerebral haematomas may be applicable to spontaneous ICH. An understanding of the pathophysiology of spontaneous intracerebral haemorrhage may result in more widespread use of "brain protective agents" which will also have to be subjected to randomised controlled studies.

Conclusion
The increasing availability of CT in district general
Editorial

Regional Neurosciences Centre, Newcastle General Hospital, Newcastle upon Tyne.