SHORT REPORT

Subcortical aphasia from a thalamic abscess

Jozef Megens, Johan van Loon, Jan Goffin, Jan Gybels

Abstract
A patient is reported who was treated successfully for a left thalamic abscess that resulted in subcortical aphasia. A SPECT scan showed large areas of hypoperfusion in the cortex of the left hemisphere. At follow up after seven months there was marked improvement in the language disorder and the cortical hypoperfusion. It is suggested that aphasia in patients with subcortical lesions results from secondary cortical dysfunctions. The evidence is confined to patients with stroke lesions. The possible implications of this case on current theories of pathophysiological mechanisms, in particular the leuкоencephalopathic theory and the cortical diaschisis theory, are briefly discussed. Cortical diaschisis may be the appropriate explanation in this patient.

Aphasia may occur after lesions of deep subcortical structures. Patients with haemorrhagic and ischaemic strokes in the region of the basal ganglia of the dominant hemisphere have been extensively studied.1–11 A relatively consistent picture has emerged, thus the concept of "subcortical aphasia".12 Many issues, however, remain controversial. To date studies on subcortical aphasia have focused on stroke patients, thereby neglecting patients with non-vascular lesions. This omission might have influenced current theories about the mechanisms involved.

Language deficits following thalamotomy for Parkinsonism and related disorders have been well documented.13–17 Aphasia as a sign of an intrathalamic tumour has been mentioned infrequently.18–20 We describe a patient with subcortical aphasia from a thalamic abscess.

Case report
A 33 year old, right handed, physician was in good health until he developed a left retro-orbital throbbing headache, associated with vomiting and mild fever. A few days later the headache improved, but he complained of double vision. His wife noticed a difficulty with his speech and a clumsiness in his right hand. Six days after the onset of the headache he was admitted to hospital.

Neurological examination showed the patient to be lethargic, but fully oriented and cooperative. His temperature was 37.7°C and there was no neck stiffness. Spontaneous speech was not fluent with grammatical errors and some paraphasias. The volume of his voice was considerably reduced. Object naming, repetition and reading were all impaired. In contrast, comprehension was well preserved. A mild right hemiparesis caused difficulty in writing. Calculations, finger naming and right-left orientation were normal. The remainder of the neurological examination showed a vertical gaze paresis.

A CT scan of the head with intravenous iodamide showed a mass lesion in the region of the left thalamus (fig 1a). There was marked ring enhancement, perifocal oedema and a slightly deviated third ventricle, but no intraventricular system. Left carotid and vertebral angiography confirmed the presence of a mass lesion in the left thalamic region. There were no other angiographic abnormalities.

A CT guided stereotactic puncture of the lesion allowed aspiration of pus. Streptococcus milleriis was identified as the infecting organism and the patient was treated with high doses of intravenous penicillin and metronidazole. Infected dental caries appeared as a probable source.

During the following weeks the patient's condition improved considerably, together with a progressive shrinkage of the abscess on CT and MRI (fig 1b). Four weeks after admission the patient had an extensive neuropsychological assessment, including detailed tests of language and cognitive functioning: Porch Index of Communicative Ability (subtest 1: P95–99; subtest 2: P99; subtest 3: P99; subtest A: P85–90; subtest B: P90), Token-test (59/61), Minnesota-test (problems with giving definitions), WAIS (verbal IQ 100; performance IQ 102), ADM (I: 30; while 37 is a minimum for his age; II: 19, while 27 is a minimum for his age), AVLT (third trial 9, fifth trial 12, delayed recall trial 10, recognition trial 14), WMS [logical memory 13.5 (normal), paired associate learning 14 (normal)], BVRT [correct: 6 (normal=9); errors: 5 (normal=1)], Word Fluency (below P20), PRM (subtest 2: 3.3 SD –; subtest 6: 2 SD –; subtest 7: 4.3 SD all below that expected for his age and intelligence.22–23 There was a mild residual aphasia, consisting mainly of a hesitant speech and word-finding impairments. In addition general intellectual functioning, memory, attention and visuospatial abilities were all affected to some degree. Neurological examination at that
The cortical dysfunction hypothesis may be criticised on several grounds. So far the evidence is rather scarce and confined to patients with haemorrhagic or ischaemic insults. It could be argued that studies on regional brain perfusion and metabolism in patients with cerebrovascular disease are flawed by certain confounding variables, such as previous cerebral infarctions and small vessel disease from chronic hypertension. Conversely in this patient with restricted space-occupying lesion, oedema and pressure effects have to be taken into account. It seems unlikely, however, that these factors induce a pattern of hypoperfusion at a distance from the lesion. In this patient large areas of hypoperfusion were found over the left hemisphere and the right cerebellum.

In general two different theories are to be tested: the cortical disturbances in terms of underlying pathophysiological processes. Olsen et al. suggest that the cortical dysfunctions result from an ischaemic penumbra. The latter refers to an area of hypoperfusion located adjacent to a cerebral infarct. Blood flow in this area is sufficient for tissue viability, but not sufficient for normal function. In our opinion the cortical hypoperfusion and aphasia in this patient with a non-ischaemic lesion and an otherwise normal arteriography argues against a purely vascular explanation and requires at least an extension of this theory.

Perhaps another more satisfying explanation is the cortical diaschisis theory. Diaschisis is defined as a transient depression of the function of intact brain regions, remote from, but connected to a focal lesion. According to this theory cortical neuronal activity is critically decreased due to the loss of essential input from thalamocortical projections. Hypoperfusion is thus secondary to hypometabolism and loss of function. There is some support for this theory from animal experiments. The exact anatomical basis for this process, however, is not entirely clear.

A wide range of subcortical lesions may produce language disturbances, including lesions of the ventrolateral thalamus, striatum, portions of the internal capsule and periventricular white matter. There have been attempts to correlate lesion sites to specific aphasia profiles. This undertaking, already a difficult one in this region with many different grey matter structures and fibre tracts tightly packed together, seems further complicated, if diaschisis effects are to be taken into account.

If the language disturbance is due solely to cortical dysfunctions, the specificity of the clinical picture of subcortical aphasia might be questioned. Some symptoms, however, are thought to be characteristic. A striking feature in many patients is the association with speech abnormalities, such as hypophonia. This may reflect interruption of extrapyramidal connections. Another common finding is the “transcortical” nature of the aphasia, that is spared repetition abilities.

Finally the language disorder in this previously healthy highly intelligent young man,

Discussion

Thalamic lesions may induce ipsilateral cortical hypoperfusion and hypometabolism. This phenomenon has been demonstrated several times in patients with subcortical aphasia. It has therefore been proposed that the language disorder results from secondary cortical alterations where functional deficits are potentially reversible, as opposed to the structural damage caused by the lesion itself. Subcortical aphasia may have a strong tendency for improvement, which might be explained by the reversible nature of the corresponding deficits.
may be part of a more general disturbance of
cognitive functions. It is tempting to correlate
this with the demonstration of multiple areas
of hyperfusion in the cortex of the left hemi-
sphere. Recently neurobehavioural deficits fol-
lowing lesions of subcortical structures have
been described in detail. Further studies are
needed to investigate the role of cortical
diaschisis as the underlying cause in these
situations.

The authors are indebted to Dr M De Roo for the in-
terpretation of the SPECT scan data, to Miss G Demey and Mr E
Manders for the interpretation of the neuropsychological tests,
and to Mrs M Peyron-Heeren for skilled technical assistance.

1 Ciemińska VA. Localized thalamic hemorrhage. A cause of
2 Demorez L, Derosu M, Coekaerts MJ, et al. Study of
two cases of aphasia by infarction of the left thalamus
3 McFarling D, Rothi LJ, Helm KM. Transcortical aphasia
from ischemic infarcts of the thalamus: a report of two
4 Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F.
Aphasia with nonhemorrhagic lesions in the basal ganglia
5 Kirshner HS, Austler KH. Aphasia after right thalamic
6 Papagno C, Guidotti M. A case of aphasia following left
8 Gorelick PB, Hier DB, Benevento L, Levits S, Tan D.
9 Graff-Radford NR, Damasio H, Yamada T, Eslinger PJ,
Damasio AR. Nonhaemorrhagic thalamic infarction.
Clinical, neuropsychological and electrophysiological
findings in four anatomical groups defined by computer-
10 Fromm D, Holland AL, Swindell CS, Reinstein OM.
Various consequences of subcortical stroke. Prospective
study of 16 consecutive cases. Arch Neurol 1985;42:
945-50.
dans les aphasies sous-corticales. Rev Neurol 1986;
142:431-40.
12 Benson DF, Geschwind N. Aphasia and related disorders: a
clinical approach. In: Mesulam MM, ed. Principles of
Behavioral Neurology. Philadelphia: Davis, 1985:
193-238.
13 Bell DS. Speech functions of the thalamus inferred from
14 Savaki HE, Savaki, M, Alexander MP, et al. Language and speech
correlates of anatomically verified lesions in thalamic
surgery for Parkinsonism. J Speech Hearing Res
15 Riklán M, Levita E. Psychological studies of thalamic
lesions in humans. J Neurol Neurosurg Psychiatry 1978;
41:251-65.
16 Villiki M, Laitinen LV. Differential effects of left and right
ventrolateral thalamus on receptive and expressive
verbal performances and face-matching. Neuropsychologia
17 Darley FL, Brown JR, Swenson WM. Language changes
after neurosurgery for Parkinsonism. Brain and Language
18 Smyth GE, Stern K. Tumours of the thalamus. A clinic-
19 Chandler PF, Farhat SM, Paul JF. Intrathalamic epider-
moid tumor: Case report. J Neurol Neurosurg Psychiatry
20 Hirose G, Lombroso CT, Eisenberg H. Thalamic tumors in
childhood. Clinical, laboratory, and therapeutic con-
21 Sharp PF, Smith FW, Gemmel HG. Technetium-99m-
HMPAO stereonumers as potential agents for imaging region-
al cerebral blood flow: Human volunteer studies. J
22 Eisenberg J. Adult aphasia. Assessment and treatment. Engle-
University Press, 1983.
24 Franch G, Salmon E, Sadot Z, Van Der Linden M. Etude
hémodynamique et métabolique par tomodigraphie à emis-
sion de positons d'un cas d'atteinte ischémique thalamo-
25 Metter EJ, Wasterlain CG, Kuhl DE, Hanson WR, Phelps
ME. FDG Positron emission computed tomography in
26 Baron JC, D'Antona R, Serdaru M, Pantano P, Bousser
MG, Samson Y. Hypometabolism cortical après lesion
thalamique chez l'homme: étude par la tomodigraphie à
27 Olsen TS, Bruhn P, Obreg RGE. Cortical hyperfusion as a
possible cause of "subcortical aphasia". Brain 1986;
109:393-410.
29 Perani D, Valiar G, Cappa S, Messa C, Fazio F. Aphasia
and neglect after subcortical stroke. A clinical/cerebral perfu-
sion study. J Neurol Neurosurg Psychiatry 1987;50:
317-9.
31 Olsen TS, Larsen B, Henning M, Skriver EB, Lassen NA.
Blood flow and oxygen reactivity in collaterally perfused
brain tissue. Evidence of an ischemic penumbra in
32 Feeney DM, Brion J, Decashiess. Stroke 1986;17:
817-30.
33 Girault JA, Savaki HE, Desban M, Glowinski J, Benson MJ.
Bilateral cerebral metabolic alterations following lesion
of the ventromedial thalamic nucleus: mapping by the
in vivo 'C-deoxyglucose method in conscious rats. J Comp
Neurol 1985;231:137-49.
34 Girault JA, Savaki HE, Desban M, Glowinski J, Benson MJ.
Consequences of the lesion of the nonto-vento-médian
of the thalamus on the metabolisme cerebral: une étude expéri-
35 Archer CR, Illinsky JAA, Goldfeder PB, Smith KB. Aphasia in
thalamic stroke: CT stereotactic localization. J Comp
36 Necker M, Alexander MP, Helms-Echtstreft N, Levine
HL, Laughlin SA, Geschwind N. Aphasia with predomi-
nantly subcortical lesion sites. Description of three
capsular/putaminal aphasia syndromes. Arch Neurol
37 Algran JA, Algran MA, Palumbo CL. Correlations of
subcortical CT lesion sites and aphasia profiles. Brain
38 Katz DI, Alexander AM. Dementia following strokes in
the mesencephalon and diencephalon. Arch Neurol
39 Mesulam MM. Patterns in behavioral neuroanatomy: asso-
ciation areas, the limbic system, and hemispheric special-