disorder. The combination of HLA types in these patients may be a marker for a predisposition to the Guillain-Barré syndrome.

DLY DAVIDSON
AF O'SULLIVAN
KID MORLEY
Ninewells Hospital and Medical School,
Dundee DD1 9SY, UK


Adult onset acid maltase deficiency associated with epilepsy and dementia: a case report

Adult onset acid maltase deficiency (AMD) (glycogenosis type II b) characteristically presents after the age of 20 years with a slowly progressive limb-girdle muscle weakness. Involvement of proximal muscles occurs in a third of cases and may be the presenting feature. Although CNS involvement is seen in the more severe infantile form of AMD (Glycogenosis type IIa), it has not been described in adults. We report a case of adult onset AMD associated with epilepsy and dementia.

A 65 year old woman was referred with intractable epilepsy, the onset of which was at 20 years with a generalised tonic-clonic seizure. Seizures had continued without remission despite treatment with phenobarbital, phenytoin, and sodium valproate. The patient was afebrile and did not report any other symptoms. She had a history of consanguinity and was from a family with several AMD cases. On examination she had a normal tone and strength in all four limbs and no evidence of atrophy. Sensation was normal. Bilateral grasp reflexes were elicited. Upper limb tendon reflexes were normal but both ankle jerks were absent bilaterally. Plantar responses were flexor. No sensory deficit was found and cranial nerve examination was unremarkable except for obesity.

The following investigations were normal or negative: full blood count, electrolytes, liver function, renal function, thyroid function, serum electrolyte, autoimmune profile, blood film for acanthocytes, serology, plasma and urinary amino acids, white cell lysosomal enzymes and nerve conduction studies. The serum lactate level was 4.5 mmol/l and 1 hour and the creatine kinase was raised at 405 IU/L (0-243 IU/L). Initially serum lactate was slightly elevated at 1.83 mmol/l (0.5-1.65 mmol/l), but was normal on two subsequent occasions. Serum pyruvate was normal. An electrocardiogram showed poor R wave progression but was otherwise normal. Chest radiography revealed a raised right diaphragm. Laying and standing vital capacity were 1.051 and 1.51 respectively. Arterial blood gases were normal. During a sleep study lasting 9-18 hours oxygen saturation was 70-80% for 2-3 minutes, 80-90% for 35 minutes in the remainder of the study. Electrographic findings were moderately myopathic without any specific features. Histological appearances of a quadriceps muscle biopsy were indicative of AMD, with a high proportion of muscle fibres containing multiple vacuoles packed with glycogen. Acid maltase activity in the muscle was reduced to 0.01 (0.07-0.29) mmol hydrolysed per gram of muscle (wet weight) per minute. Oxidative enzymes, phosphorylase, and adenylyl deaminase were normal. The diagnosis was supported by finding a significant number of lymphocytes containing small discrete glycogen filled vacuoles.

CT brain scan showed cerebellar atrophy but the patient was unable to comply with an MRI scan. An electroencephalogram showed an irregular dominant rhythm of 8 Hz, widespread theta and delta activity and superimposed bilateral spike and spike wave discharges. Neuropsychological assessment revealed a full scale IQ of 107 (WAIS-R) and the evidence of deterioration and most marked impairment of frontal lobe function.

The progressive weakness with evidence of respiratory muscle involvement, muscle histology, and lymphocyte appearances in this patient were all typical of adult onset AMD. Serum lactate was raised on one of three measurements, which although not a usual feature of AMD may have been secondary to hyperventilation. Additional features in this case were epilepsy, psychiatric disturbance and impaired cognition, for which no other aetiology was identified. Her three siblings with AMD showed a spectrum of clinical and pathological findings, but did not have epilepsy or dementia, and an elder sister with no history of muscle weakness, had epilepsy. It is possible that, in this family there is a tendency to epilepsy independent of the AMD. An alternative explanation is that the epilepsy, psychiatric disturbance and impaired cognitive function seen in this patient are a manifestation of central AMD. Although in previous cases of adult onset AMD clinical involvement has been restricted to the skeletal muscles, necropsy studies have revealed the disease to be associated with microscopic abnormalities in all skeletal muscles, whether weak or not, and variable involvement of smooth muscle, cardiac muscle, the tongue and the spleen. In these two studies of adult onset AMD no microscopic abnormalities were found in the brain.

Acid maltase activity is lowest in skeletal muscle, but also reduced in the liver, heart and brain. Cerebral acid maltase activity has been recorded as 6.5% of normal. There is variation in the degree to which various organs are affected. For example in one post mortem study, acid maltase activity in the myocardium was as low as that in skeletal muscle and this was reflected by a vacuolar cardiomyopathy.

In cases of infantile AMD there is more marked acid maltase activity. Both cardiac and central nervous system manifestations are more prominent, with abnormal glycogen storage in most cells of the brain and spinal cord.

In the few adult onset cases that have been studied, acid maltase activity in the brain has been low. It is possible that this patient with adult onset AMD has very low levels of cerebral acid maltase activity and that this is the cause of her disturbance of cerebral function. The association of adult onset AMD with epilepsy, cognitive impairment and psychiatric disturbance, however, may be fortuitous as the diagnosis was drawn from a single patient. We draw attention to the association in case similar patients have been seen by others.

M PREVETT
TP ENEVOLDSEN
KD DUNCAN
National Hospital for Neurology and Neurosurgery,
Queen Square,
London WC1 3BG, UK

Correspondence to: Dr Duncan

1 Engel AG. Acid maltase deficiency in adults—studies in four cases of a syndrome which may mimic muscular dystrophy or other myopathies. Brain 1976;99:435-68.

A reappraisal of "direction of scratch" test: using somatosensory evoked potentials and vibration perception

We would like to comment on the article by Hankney and Edin's which proposed "direction of scratch" test for the clinical examination of posterior column function. Their method is easy to perform, and the errors in the detection of direction of scratch on the skin were reported to be correlated with impaired position and/or vibration sense tested using 128 Hz tuning fork. Somatosensory evoked potential (SEP) and vibration sense was thought to be mediated through the posterior column and lemniscal afferent pathways and that the usefulness of their test together with SEPs and quantitative vibration sense.

Fifty six patients, mean age 43.5, were studied. They consisted of 43 patients with

0
Multiple sclerosis, six with spinocerebellar degeneration, two with hereditary spastic paraplegias, two with ossifications of the posterior longitudinal ligament, two with cerebrovascular diseases and one patient with thoracic spinal cord tumour. None were complicated by peripheral neurophy. A uniform random binary number sequence of 10 vertical 2 cm scratches was performed over the anterior aspect of the shin with the sharp margin of a paper clip. The subjects were asked to state whether the direction of the scratch was “up or down”, and the number of errors was assessed. Scalp N/P 37 and N19 over the T12 spinous process to electric stimulation of the posterior thial nerve were recorded by means of a Medelec MS-20 (UK), and the central conduction time (CCT; N/P37-N19) was evaluated. Vibration perception of the big toe was measured at 63 Hz, 125 Hz and 250 Hz by a Rion vibrometer (Japan). The subjects were “blind” to the changes being made in stimulus intensity, which was increased stepwise every three seconds from -10 dB at 2.5 dB intervals until it was noticed by the subject. The vibration perception threshold (VPT) was defined as the lowest stimulus intensity to be noted. The number of errors in the scratch test was found to be significantly correlated not only with the CCT (p < 0.01, r = 0.56, figure a) but also with the VPTs at 63 Hz (p < 0.01, r = 0.34, 125 Hz (p < 0.01, r = 0.34, figure b) and 250 Hz (p < 0.05, r = 0.27). These results agree that the scratch test, SEP and VPT are examinations commonly reflecting posterior column function. The scratch test is recommended as a simple and yet reliable clinical neurological examination for detecting posterior column dysfunction.

YUMIKO MOTOI
HIROYUKI MATSUMOTO
YUH KANESHIGE
SUNMI CHIDA
Department of Rehabilitation and Neurology, Sapporo Medical College, Sisha 1 West 16, Chuo-Ku, Sapporo 060, Japan.

Correspondence to: Dr Motoi


Seventh nerve palsy as a false localising sign
Benign intracranial hypertension (BIH) usually produces a clinical picture of headache, visual disturbances and bilateral papilloedema. Abducens nerve palsies have been reported in between 10-30% of cases. Other cranial nerve palsies have rarely been reported in this condition and those that have occurred were nearly always in children. One case of facial diplegia occurring in an adult with this condition has been documented. We report a patient with BIH who presented with bilateral sixth nerve palsies and a right sided seventh nerve palsy all of which resolved after a lumbar puncture.

A twenty five year old obese woman on the contraceptive pill presented with a three week history of bifrontal headaches, nausea and vomiting. The headache was not made worse by coughing or stooping and neither was it relieved by analgesics. One week before admission the patient developed diplopia on horizontal gaze and visual obscuration. Examination revealed mild bilateral sixth nerve palsies and a right sided facial nerve palsy of lower motor neuron type with a reduced blink reflex. The visual acuity was 6/6-2 on the right and 6/5-1 on the left. The blind spots were enlarged but the visual fields were otherwise normal. Marked bilateral papilloedema was observed. An ophthalmological examination was normal. A CT head scan, including a contrast examination, was normal. Lumbar puncture revealed clear and colourless CSF with an opening pressure of 300 mm CSF. The fluid was acellular with a protein of 230 mg/l and a glucose of 4.0 mmol/l (plasma glucose 5.2 mmol/l), Gram stain and cytology for malignant cells were both negative. The following investigations were normal: CXR, PBC, ESR, ANF, VDRL, clotting studies, lupus anti-coagulant, fibrinogen level, immunoglobulins, C3, C4, serum oestriol, androstenedione, serum DHA - sulphate, LH and FSH. On the day following lumbar puncture, the diplopia had resolved and facial weakness improved. The patient was started on a weight reducing diet and has required no further treatment. On review six weeks after discharge, the visual acuity was 6/4 bilaterally and mild papilloedema was present.

Identifying a neurological sign as being falsely localising rests on two important considerations. Firstly, that an accurate knowledge of the anatomy is attained and secondly, that the sign itself must arise in an anatomical area that is remote from the site of the original pathology. A sixth nerve palsy is a classic example in patients with raised intracranial pressure from a brain tumour distant from the course of the nerve. The long intracranial course of the abducens nerve is thought to be responsible for its predilection compared to other cranial nerves. However, Collier favours an alternative explanation based on the direction in which the nerve emerges from the brainstem. The abducens nerve emerges in a straight forward direction, whilst all other cranial nerves emerge transversely or obliquely. Therefore, backward displacement of the brainstem by an intracranial space occupying lesion would exert its maximum effect on the sixth nerve. Either way the patho-physiological mechanism is thought to involve displacement of the brain by enlarging intracranial mass and traction upon cranial nerves. False localisation from other cranial nerve palsies have also been described. BIH offers a very good model to study the effect of raised pressure without focal mass effect suggesting that the cranial nerve palsies could be the result of general pressure related effect without implying a specific directional intracranial pressure forces. BIH was first described by Quincke in 1893. At that time oitis media was thought to be the most common anteology and there has been renewed interest in sinus occlusion in the genesis of BIH. Many other mechanisms have been implicated including obesity and the contraceptive pill both of which were involved in our patient.”

Whilst abducens nerve palsies are not uncommonly seen as a false localising sign of...