(see Refs 19–22) but also apply to the rhythm
generation which underlies extremely simple,
stereotyped, and repetitive voluntary move-
ments.

The work was supported by the MRC. JSF was in receipt of a
SERC Studentship. We wish thank Ms Frances Culsaw for
development of computer software and tapping apparatus
and Drs RG Lascelles and D Neary for allowing us to study
patients under their care.

1 Madsen CD. The mysterious motor function of the basal
2 Andrews CJ. Influence of dystonia on the response to
long-term L-dopa therapy in Parkinson's disease. J
3 Naranbhaiy H, Nakamura R. Clinical neurophysiology of
freezing in parkinsonism. In: Delwaide PJ, Agnoli A,
ed. Clinical neurophysiology in Parkinsonism. New York:
4 Kanazawa I. Clinical pathophysiology of basal ganglia dis-
case. In: Vinhon PJ, Burym GW, Kiwason HJ, eds.
Handbook of clinical neurology, Vol 5. Extrapyramidal dis-
5 Nakamura R, Nakamura H, Naranbhaiy H. Arhythmo-
6 Nakamura R, Nagasaki H, Naranbhaiy H. Disturbances
of rhythm formation in patients with Parkinson's dis-
case: Part I. Characteristics of tapping responses to the
7 Nagasaki H, Nakamura R, Taniguchi R. Disturbances of
rhythm formation in patients with Parkinson's disease:
Part II. A forced oscillation model. Percept Mot Skills
8 Nagasaki H, Nakamura R. Rhythm formation and its dis-
turbances: a study based upon periodic response of a
9 Webster DD. Critical analysis of the disability in
10 Cohen J. Things I have learned (so far). Am Psychol
1990;45:1304–12.
11 Logigan E, Hefter H, Reiners K, Freund H-J. Does
tremor pace repetitive voluntary behavior in Parkinson's
12 von Eden G, Wing A. In: Smith M, Wing A, eds. The
psychology of human movement, London: Academic Press,
13 Wing A, Krustofferson A. Response delays and the timing
14:5–12.
14 Schmidt RA, Zelaznik HN, Hawkins B, Frank JS, Quinn
TT. Motor output variability: a theory for the accuracy of
15 Findley LJ, Grerey MA, Halmagyi GM. Tremor, the cog-
wheel phenomenon and clonus in Parkinson's disease. J
16 Alberts W. A simple view of parkinsonian tremor.
Electrical stimulation of cortex adjacent to the rolandic
17 Lee R, Stein RB. Resting tremor reset by mechanical per-
turbations: a comparison of essential and parkinsonian
19 Flowers KA. Lack of prediction in the motor behaviour of
20 Benecke R, Redwell JC, Dick FR, Day BL, Marsden CD.
Simple and complex movements off and on treatment
in patients with Parkinson's disease. J Neurol Neurosurg
21 Steimach GB, Teulings H-L. Temporal and spatial char-
acteristics of repetitive movement. Int J Neurosci
22 Harrington DL, Hasland KY. Sequencing in Parkinson's
disease: abnormalities in programming and controlling

Luigi Galvani (1737–98)

Luigi Galvani, the anatomist, physician and physiologist
who discovered 'animal electricity', came from Bologna.
The galvanometer, which was invented by Andre Ampère
(1775–1836), was named after Galvani as it was the
process of covering steel with a layer of zinc (galvanism).
Galvani observed that static electricity that was stored
in a Leyden jar caused dissected frogs' legs to twitch.
This occurred if they were placed on metal during a
thunderstorm. He also noted that when dissected frogs' legs
were hung from brass hooks on an iron railing, the
muscles contracted when they came into contact with the
iron. Galvani concluded that the source of the electricity
was in the muscles and nerves of the animals. His find-
ings were later disproved by Alessandro Volta who by
1800 had constructed electric batteries consisting of two
different metals in an electrolytic salt solution. Volta
established that the source of the electricity in Galvani's
experiment had been two different metals with the ani-
mals' body fluids acting as the conducting medium.
Galvani's observations were, however, the starting point
of electrophysiology.

Galvani was honoured with this Italian stamp in 1934
on the occasion of the First International Congress of