On examination he was well and not overweight. Corrected visual acuity was 6/6 on the right and 6/18 on the left. Colour vision was normal. There was mild constriction of the peripheral visual fields and the blind spots were enlarged, more so on the left. There was bilateral papillodema, worse on the left, with haemorrhages and retinal and choroidal folds. The remainder of the examination was normal, as was the general examination.

The following investigations were normal or negative: full blood count, electrolytes, renal function, liver function, serum glucose, immunoglobulins, syphilis serology, lupus anticoagulant, protein C and S, anti-thrombin III, autoantibody screen, monosper, and cold agglutinins. Psittacosis complement fixation test was reactive at 1280. A repeat measurement three weeks later was 640. Mycoplasma and Coxiella titres were both < 40. A chest radiograph and CT brain scan were normal. Intravenous digital subtraction angiography showed no occlusion of the major cerebral venous sinuses. At lumbar puncture the opening pressure was elevated at 37 cm; CSF constituents were normal.

A total of 20 ml of CSF was drained with symptomatic improvement and he was given a ten day course of oral erythromycin. Two weeks after the initial lumbar puncture the patient recurred with intermittent diplopia. Mild bilateral sixth nerve palsies were now present and at repeat lumbar puncture CSF pressure was 37-5 cm. He was started on azetazolamide 250mg twice daily. One week later the CSF pressure was 22-5cm and his symptoms and visual fields had improved. The azetazolamide was continued for a further two weeks but then stopped following an episode of acute renal colic. Despite this he continued to improve and after nine months, although troubled by occasional headaches, visual acuity was 6/6 on the right and 6/9 on the left. The left blind spot remained slightly enlarged but peripheral fields were now normal. There was no swelling of the optic discs and eye movements were normal. To date there has been no recurrence or sequelae.

The systemic disturbance at the onset of this patient's illness is compatible with a diagnosis of psittacosis. A review of 135 cases of serologically confirmed psittacosis found the characteristic features to be an abrupt onset of fever, rigors, sweats, a prominent headache, and a mild dry cough which often appeared late. Respiratory symptoms were absent in 18% of patients, but over 90% had an abnormal chest radiograph, or abnormal chest signs, or a combination of both. Despite the absence of respiratory symptoms in our patient, his initial CSF lactone and the chest radiograph are consistent with this diagnosis. As the patient presented to us 10 weeks after the initial febrile illness, we were unable to demonstrate a rise in the complement fixation titre and a raised titre may merely reflect previous exposure. However, a single titre of > 256 without an associated antibody rise to one of the commoner respiratory infections is generally considered sufficient evidence for a diagnosis of psittacosis. The initial titre of 1280 in our patient, which subsequently fell to 640, is thus consistent with infection. In combination the clinical, radiological and serological features support a diagnosis of psittacosis. The previous death of one of the patient's parrots may also have been relevant. In 25% of cases where there is a firm history of exposure to birds, one or more of the bird's body fluid was positive.5

The subsequent visual symptoms, visual field abnormalities, and papillodema with an elevated CSF pressure and a normal CT brain scan suggested a diagnosis of so called benign intracranial hypertension. The condition is unusual in males who account for only 16% of cases and obesity is less strongly associated than in females. The cause of the syndrome in most cases remains undetermined. There are several potential mechanisms in this particular patient. Firstly, venous sinus thrombosis occurring at the time of the initial febrile illness could explain the intracranial hypertension and this could possibly have resolved by the time of digital subtraction angiography. This possibility is compatible with the patient's improvement which could have been spontaneous and unrelated to antibiotic and acetzolamide therapy. Tetracycline, the treatment of choice for psittacosis, is associated with benign intracranial hypertension, but our patient received no specific treatment for his original illness. Lastly, CSF absorption may have been impaired secondary to meningo-encephalitis, which is a recognised complication of psittacosis. Our patient had symptoms compatible with both meningo-encephalitis but CSF constituents were normal on two occasions. Thus the pathogenesis of intracranial hypertension in this patient is not entirely clear.

Psittacosis appears to be increasing in frequency and this previously unreported complication emphasises the potentially devastating nature of the disease.

M PREVETT

AE HARDING

University Department of Clinical Neurological and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK

Correspondence to: Dr Prevett.


MATTERS ARISING

Neurogenic effects on the palatopharyngeal muscle in patients with obstructive sleep apnoea: a muscle biopsy study

Edstrom et al reported neurogenic lesion in the palatopharyngeal muscle of eight patients with obstructive sleep apnoea. Their report is particularly interesting as they suggest a disturbance of the dilating muscle function of the pharynx in the pathogenesis of obstructive sleep apnoea. Surprisingly, the authors did not consider our published data on muscle fibre type distribution of middle palatopharyngeal muscle in habitual snorers. In these patients we found an abnormal distribution of fibre types (low percentage of type I and high percentage of type IIa fibres) compared with controls. No myopathic or neurogenic changes were found. We proposed two hypotheses to explain the abnormal distribution of fibre types in snorers.

First, a constitutionally determined reduction of slow α-motor neurons induces an adaptive transformation of type IIb to type IIa fibres. Due to the long life span of α-motor neuron, these change their patterns of discharge and, hence, of activation, and modify fibre-type distribution of medium pharyngeal constrictor muscles to the anatomical characteristic of upper airway and habitual snoring.

In patients with obstructive sleep apnoea Edstrom et al found a large variability in muscle fibre size, signs of neurogenic stress and muscle fibre atrophy. However, no neurological evaluation or investigations were performed in patients with obstructive sleep apnoea to exclude a peripheral neuropathy or muscular pathologies. The authors did not specify whether or not the patients had undergone recent pharmacotherapy. It is commonly known that some drugs can change the muscle fibre type distribution. An important factor is the site of the muscle sampling in the different patients. Biopsy samples not taken at the same site and same depth tend to vary in fibre type distribution and diameter.6

If details of the points we have raised are available there might be a greater understanding of the pharyngeal muscle involvement in patients with obstructive sleep apnoea.

SANDRO IANNACCONE
LUIGI FERINI-STRAMBI
RAFFAELO NEMNI
SALVATORE SMIRNE
Department of Neurology, State University and Scientific Institute H S Raffade, Milan, Italy

EDSTROM ET AL REPLY

The principal reason why we did not consider the results from Iannaccone et al because they were not published when the original version of our manuscript was completed. We have, however, considered their comments with interest.

We do not, however, find their results comparable to ours as a different biopsy site was examined. It is possible that sites in the pharynx are affected in different ways by snoring and obstructive sleep apnoea. Furthermore, it is not known whether the patients in the study by Iannaccone et al had obstructive sleep apnoea or not, and snoring was not a medical problem. It is not possible to judge from interviews only whether a patient has obstructive sleep apnoea. In our study we had sought medical attention because of problems associated with obstructive sleep apnoea. We would like to emphasize that this lesion is probably present in all patients with obstructive sleep apnoea. In conclusion, the observation of Iannaccone et al is important and deserves further investigation.
Matters arising

We believe the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.1

We consider the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.4

We believe the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.4

We believe the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.4

We believe the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.4

We believe the different findings in the study by Iannaccone et al are due to a different biopsy site being examined and that the same type of lesions have been described by Woodson et al in the uvular muscle of these patients. Recently we have published a study showing affected sensory pharyngeal neurones in obstructive sleep apnoea patients.4