Mechanisms of late stroke after myocardial infarct: the Lausanne Stroke Registry

Rosario Martin, Julien Bogousslavsky, for the Lausanne Stroke Registry Group

Abstract

To assess the potential mechanisms and patterns of late stroke after myocardial infarct, 94 consecutive patients with first ever stroke at least three months after myocardial infarction (anterior 67%; inferior 12%; widespread 12%) were studied. Systematic investigations were those of the Lausanne Stroke Registry and included brain CT, extra/transcranial Doppler ultrasound, 12-lead ECG, three-lead continuous ECG monitoring for at least 24 hours after admission, and transthoracic two dimensional echocardiography. All patients had an akinetic left ventricular segment, but only 11 (12%) had a visible thrombus. Eleven (12%) of the patients had long standing hypertension and a small deep infarct so that lacunar infarction due to small artery disease was as likely to be the cause as cardioembolic stroke. There was severe internal carotid artery disease (≥ 50% stenosis or occlusion) ipsilateral to the infarct in 20 (21%) of the patients with anterior circulation stroke. A potential cardiac source of embolism other than akinetic left ventricular segment was found in 14 (15%) patients, atrial fibrillation (12%) being the commonest. Only 13 (14%) patients had no potential cause for stroke other than akinetic left ventricular segment. The study group was compared with 466 patients with first stroke but no akinetic left ventricular segment on two dimensional echocardiography, and with 94 patients with first stroke and a potential cardiac source of embolism but no akinetic left ventricular segment and no history of ischaemic heart disease. Logistic regression analysis showed that older age, male sex, hypercholesterolaemia, and vascular claudication were significantly and independently associated with stroke after myocardial infarction. The findings suggest that late stroke after myocardial infarction may often be a direct consequence of the sequelae of myocardial infarction, but other potential cardiac causes of stroke, large artery disease, and lacunar stroke must also be considered.

Methods

Patients with stroke at least three months after myocardial infarction were selected from all patients (n = 1802) consecutively included in the Lausanne Stroke Registry, a hospital based computerised prospective registry of patients with first ever stroke (cerebral infarction or haemorrhage, neurological deficit lasting more than 24 hours). The characteristics of this registry have been presented in detail elsewhere.

All patients were assessed by at least one staff neurologist within six days of stroke. Systematic investigations included brain CT (up to four examinations, the first within seven days of stroke) with and without contrast (except when the patient was known to be allergic to contrast material), Doppler ultrasound with frequency spectral analysis and B-mode echotomography (common, external, and internal carotid arteries, vertebral arteries at the retromastoid level, subclavian arteries, ophthalmic arteries), transcranial Doppler, 12-lead ECC, three-lead continuous ECC monitoring for at least 24 hours after admission, two dimensional echocardiography, and standard blood and urine tests. Cerebral angiography was performed in selected patients.

Akinetic left ventricular segment was diagnosed on the basis of two dimensional echocardiography. The criteria for akinetic left ventricular segment were those of the American Society of Echocardiography. Other potential cardiac sources of embolism included intracardiac thrombus or tumour, rheumatic mitral stenosis, prosthetic aortic
and mitral valve, endocarditis, atrial fibrillation, sick sinus syndrome, and global cardiac hypokinesia or dyskinesia. Risk factors and concomitants (hypertension, diabetes mellitus, current or former oral contraceptive use, cigarette smoking, hypercholesterolaemia, venous haematocrit, history of migraine, ischaemic heart disease, arrhythmia or vascular claudication, and family history of stroke or heart disease), characteristics of the stroke onset, clinical findings, previous transient ischaemic attacks (TIAs), functional disability, type and cause of the stroke were defined and analyzed following the guidelines of the registry.

We studied separately the subgroup of patients with no alternative cause of stroke other than myocardial infarction sequelae [without coexisting large artery disease (as detected by Doppler ultrasound and B-mode echotomography) and without evidence for small artery disease (no lacunar infarct, no history of hypertension)], in whom the likely cause of stroke was cardioembolism. The patients with late stroke after myocardial infarction were compared (1) with the patients with first ever stroke who were admitted during the same period but who had no akinetic left ventricular segment on two dimensional echocardiography [84 (89-4%) men and 10 (10-6%) women, with a mean age of 64-5 (12-12) years (range 34 to 39 years). Fourty two (44-7%) patients had hypertension, 17 (18%) had diabetes mellitus, 36 (38-3%) smoked cigarettes regularly, and 21 (22-3%) had hypercholesterolaemia. Venous haemotocrit on admission was higher than 0-45 in 25 (26-5%) patients, 12 (12-7%) patients had a history of vascular claudication, and 12 (12-7%) had a family history of stroke or heart disease. When compared with the group of patients without myocardial infarction, the patients with old myocardial infarction were significantly older, they were more frequently men, they more often had hypertension, diabetes mellitus, hypercholesterolaemia, or a history of vascular claudication (table). The figure shows the odds ratio with 95% confidence intervals adjusted for age and sex. When compared with patients with another potential cardiac source of embolism, the patients with old myocardial infarction were significantly older, they were more frequently men, and more often had hypertension and diabetes mellitus (table).

After stepwise multiple logistic regression, only age, sex, history of vascular claudication, and hypercholesterolaemia were linked to the presence of old myocardial infarction in stroke patients, according to:

\[
P(\text{akinetic left ventricular segment}) = \frac{e^f}{1 + e^f}
\]

where: \(f = -4.43 + 0.05x_1 -1.75x_2 + 0.81x_3 + 0.77x_4\)

where: \(x_1 = \text{age}, \ x_2 = \text{sex}, \ x_3 = \text{history of vascular claudication}, \ x_4 = \text{hypercholesterolaemia}\). P(old myocardial infarction) = probability of old myocardial infarction in patients with stroke with standard errors of 0.97 for intercept, 0.01 for age, 0.35 for sex, 0.42 for history of vascular claudication, and 0.31 for hypercholesterolaemia.

Among the 94 patients with old myocardial infarction, only 13 (14%) had no large artery
disease appropriate to the symptoms and no evidence of small artery disease (no lacunar infarct, no hypertension). However, when we compared this subgroup with the remaining patients with old myocardial infarction, there was no significant difference for risk factors and concomitants.

HEART DISEASE
Heart auscultation was abnormal in 33 (35.2%) patients with akinetic left ventricular segment; 91 (96.8%) patients with old myocardial infarction had ECG findings of ischaemic heart disease. The topography of akinetic left ventricular segment corresponded with the topography of myocardial infarction on ECG (antero-lateral myocardial infarction 63 (67%), inferior wall myocardial infarction 11 (12%), and widespread myocardial infarction 11 (12%). Fourteen (14.9%) patients had a history of cardiac dysrhythmias [atrial fibrillation: 11 (12%); sick sinus syndrome: one (1%); supraventricular tachycardia: two (2%)]. On the admission ECG 13 (15.7%) patients had a cardiac dysrhythmia [atrial fibrillation: nine (10%); ventricular extrasystolia: three (3%); bradycardia: one (1%)], 12 (12.8%) patients had a conduction defect, and five (5.3%) patients had signs of left ventricular hypertrophy. There was no significant difference between the three groups for the frequency of cardiac dysrhythmia and conduction defects. Eleven (11.7%) patients with akinetic left ventricular segment also had a left ventricular thrombus. No patient with akinetic left ventricular segment had coexisting rheumatic mitral stenosis, prosthetic aortic or mitral valve, endocarditis, or intracardiac tumour.

ARTERIAL DISEASE
Thirteen (13.8%) patients with akinetic left ventricular segment had a neck bruit (ipsilateral to the infarct in seven patients, contralateral in one patient, and bilateral in five patients). Twenty (21.3%) patients with old myocardial infarction had ≥ 50% stenosis or occlusion of the internal carotid artery (ICA) ipsilateral to the cerebral infarct; nine (9.6%) patients had ≥ 50% stenosis or occlusion of the contralateral ICA. Patients with old myocardial infarction more often had a neck bruit and a significant stenosis or occlusion of pre-cerebral arteries than patients without old myocardial infarction [≥ 50% stenosis or occlusion of the ipsilateral ICA: 23 (10%), p = 0.001; ≥ 50% stenosis or occlusion of the contralateral ICA: eight (2%), p = 0.000] and those with another potential cardiac source of embolism [≥ 50% stenosis or occlusion of the ipsilateral ICA: six (6%), p = 0.000; ≥ 50% stenosis or occlusion of the contralateral ICA: one (1%), p = 0.022]. Eleven (11.7%) patients with old myocardial infarction had coexisting small artery disease. This proportion was similar to that found in the patients without old myocardial infarction and in those with another potential cardiac source of embolism. There was no significant difference between the three groups for the frequency of visible intracranial occlusions suggesting embolism in the patients who had angiography within 48 hours of stroke.

PREVIOUS TIAS AND STROKE ONSET
Twenty four (25.5%) patients with old myocardial infarction reported TIAs before the stroke. There was no significant difference when compared with the patients without old myocardial infarction [104 (22%)], but compared with patients with another potential cardiac source of embolism, patients with old myocardial infarction less frequently had TIAs ipsilateral to the cerebral infarct [13 (14%) vs 22 (23%), p = 0.041]. There was no significant difference between the three groups for the number and duration of the TIAs or for the TIA stroke interval. In the old myocardial infarction patient group, stroke was immediately complete in 79 (84%) patients, progressed smoothly in six (6.4%) patients (< 24 hours in four patients > 24 < 36 hours in two patients), and fluctuated in nine (9.6%) patients (< 24 hours in one patient, > 24 < 30 hours in eight patients). Stroke was completely complete in patients with than without old myocardial infarction (84% vs 74%, p = 0.010). Stroke was as often immediately complete in patients with old myocardial infarction as in patients with another potential cardiac source of embolism. Two (2.1%) patients with old myocardial infarction had a syncope (sudden transient loss of consciousness) as the first cerebral symptom.

CEREBRAL INFARCT
The stroke was seen on CT in 85 (87.2%) patients with old myocardial infarction, in 393 (84.3%) patients without old myocardial infarction, and in 84 (89.36%) patients with another potential cardiac source of embolism. Ninety three (98.9%) patients with old myocardial infarction had a cerebral infarction and one (1.1%) patient apparently had a primary cerebral haemorrhage. This proportion was similar to that found in patients without old myocardial infarction [cerebral infarct: 450 (96.6%); primary cerebral haemorrhage: 16 (3.4%)]. Patients with old myocardial infarction had a lower proportion of cerebral haemorrhage than patients with another potential cardiac source of embolism (cerebral infarct 84 (89.36%); cerebral haemorrhage 10 (10.63%). Fifty one (54%) patients with old myocardial infarction had a left cerebral infarction, 34 (36%) patients had a right cerebral infarction, and nine (10%) had a bilateral cerebral infarction. In 21 (22%) with old myocardial infarction, the cerebral infarction was vertebrobasilar and in 64 (68%) patients it was in the carotid territory (inferior division of the middle cerebral artery (MCA):19 (20%); deep ICA:16 (17%); superior division MCA:20 (21%); superficial + deep MCA: seven (7%); watershed infarct: two (25%). There was no significant difference between patients with old myocardial infarction, patients without old myocardial infarction, and patients with
another potential cardiac source of embolism for the topography of the cerebral infarcts.

NEUROLOGICAL DEFICIT
Patients with old myocardial infarction more often had headache at onset than patients without old myocardial infarction (11 (11.7%) vs 109 (23.4%, p = 0.049)), and as often as patients with another potential cardiac source of embolism. Eleven (11.7%) patients with old myocardial infarction had decreased consciousness (somnolence or coma) on admission similar to the patients without old myocardial infarction or the patients with another potential cardiac source of embolism. Fifty three (56%) patients with old myocardial infarction had speech disturbances (dysarthria or aphasia). The clinical findings of patients with old myocardial infarction were: motor only: 30 (32%); sensory only: four (4%); visual field only: 10 (11%); motor + sensory: 19 (20%); motor + visual field: one (1%); motor + sensory + visual field: 11 (12%); sensory + visual field: three (3%); other deficit: 16 (17%). There was no significant difference between the three groups for the clinical findings.

SHORT TERM EVOLUTION
Short term evolution was similar in patients with old myocardial infarction, those without old myocardial infarction, and those with another potential cardiac source of embolism. In the old myocardial infarction group, three (3.2%) patients died and 56 (59.6%) were able to return to all or most previous activities.

Discussion
The frequency and potential role of the sequelae of myocardial infarction in patients with stroke have not been extensively studied and when mentioned it is usually without special analysis.13-22 The frequency of old myocardial infarction in our series of first stroke patients (17%) was between the 5-2% (three of 76 patients studied by two dimensional echocardiography) reported by Caplan et al.24 and the 24-5% (14 of 57 patients studied by two dimensional echocardiography) reported by Franco et al.16 Our study is the first in which systematic CT, Doppler ultrasound, and echocardiography were performed in patients with late stroke after myocardial infarction, providing an evaluation of the coexistence of other potential causes of stroke than akinetic left ventricular segment in these patients. When compared with patients with stroke but no old myocardial infarction, or with patients with another potential cardiac source of embolism, the main characteristics of the patients with old myocardial infarction were older age, male gender, history of vascular claudication, and hypercholesterolaemia. Most of our patients had an anterior wall myocardial infarction and akinetic left ventricular segment, which is more often associated with left ventricular thrombi than inferior wall myocardial infarction.22,24

Follow up studies have suggested that patients with myocardial infarction had a significant increase in risk of stroke during the first two to three months after myocardial infarction, but the subsequent risk was poorly assessed.25,26 Clinical trials with a long term follow up suggested that the risk of ischaemic stroke during the first three years after myocardial infarction is about 3%.27-29 Jones, et al.29 found that 10 of 34 patients with myocardial infarction at least three months before stroke had no possible cause of stroke other than an akinetic left ventricular segment. Fourteen percent of our patients had no potential cause for stroke other than akinetic left ventricular segment, and we assume that at least in that subgroup of patients, akinetic left ventricular segment was a likely source of cerebral embolism, even without visible thrombi.

Many of the patients with ischaemic stroke may have a coexisting potential cardiac source of embolism and arterial disease.30,31 A previous study from this centre30 showed that approximately one quarter of the patients with cerebral hemispheric infarcts and a potential cardiac source of embolism also had appropriate carotid disease. In our series, more than a fifth of the patients with old myocardial infarction had >50% stenosis or occlusion of the ICA ipsilateral to the stroke, this proportion being higher than that found in patients without old myocardial infarction and in patients with another potential cardiac source of embolism. Also, 12% of the patients with old myocardial infarction had long standing hypertension and a small infarct limited to the territory of deep perforators, an association which has been considered to be very suggestive of small artery disease.32,33 This proportion was not different from that found in patients without old myocardial infarction and in patients with another potential cardiac source of embolism, and is also similar to the 13% reported in patients with nonvalvular atrial fibrillation.33 Conversely, 17% of patients with infarct in the territory of deep perforators may have a potential cardiac source of embolism.34 Coexisting potential cardiac sources of embolism may also confuse the exact role of each potential source. These facts make it difficult to determine the exact mechanism of stroke in many patients, in whom small artery disease, artery to artery embolism and cardioembolism may be equally likely.

Although it seems impossible to establish a predictive clinical profile of cardioembolic stroke, there are some features which may suggest an embolic mechanism.30,35-37 Actually, in 84% of our patients with old myocardial infarction, stroke was immediately complete, a fact which has been associated with the presence of a potential cardiac source of embolism.38,39,40,41 Also, only 14% of the patients with old myocardial infarction reported prior TAs ipsilateral to the cerebral infarction, which have usually been linked to an atherothrombotic mechanism, though they may also occur in cardioembolic stroke.30,37,38
Finally, cerebral infarct involved the superficial MCA territory in nearly half of our patients with old myocardial infarction, a location which suggests an embolic mechanism, but which may not allow distinction of an arterial from a cardiac source of embolism, though the proportion of cardioembolism is higher in posterior MCA territory infarcts and lower in anterior MCA territory infarcts. Though many patients with old myocardial infarction have coexisting small and large artery diseases, there is a subgroup of patients in whom we were unable to find another potential cause of stroke. These data suggest that myocardial infarction and its direct cardiac consequences may be a cause of stroke not only acutely but also thereafter.

R Martin is on leave from the University of Alicante and supported by the grant from the Council of Europe no. 90062.

5 Fuster V, Halperin JL. Left ventricular thrombosis and cerebro-

