the hypothesis that eNS agents affect frontal lobe function, and provides a rationale for the pharmacological treatment of frontal dysfunctions. This preliminary report in a single patient awaits extension to a larger sample.

This report was supported by a Wellcome Trust Programme grant to Dr TW Robbins, BJ Everitt, and BJ Sahakian. We thank GM Charman for assistance with testing, Dr TW Robbins for critical reading of the manuscript, and Pierre Fabre Medicament for the idazokan.

Correspondence to: Dr Hodges


Ictal language shift in a polyglot

There are a number of dysfunctions of language associated with epilepsy. During an episode usually associated with a temporal lobe focus patients may have loss of speech,1 dysphasia,2 or automatisms.3 A patient is described who speaks six languages and has automatisms in a number of these languages. The patient is a 49-year-old Indian-English speaking woman with no history of major illness, loss of consciousness, or head trauma. The episodes first began in 1980. She was speaking English and suddenly spoke a few words in Punjabi, after which she was totally out of context. She did not remember what she said and had no change of consciousness associated with this. The patient was unwell at the time with a urinary tract infection. The second episode was in 1991, when she had an episode during which she shifted from Punjabi to English but did not remember the context. There have been four further episodes in the past year. On one occasion she was on a telephone speakering to a sister in Punjabi and said in Gujrati “I don’t know, there is nothing we have cooked.” She does not remember anything about this conversation but remembers similar episodes previously and carried on with further conversation normally. On another occasion she again spoke in Gujrati “we don’t have clothes”. On a further occasion she switched from Gujrati to Urdu, saying “the closet is empty, there is nothing in the closet.” The conversation was continued for a short time by the sister but the patient could not remember this. The last episode was while teaching in English, she spoke Punjabi.

Some of these episodes have been observed by her mother who is fluent in all these languages and noticed that the patient had flickering eyes and gulping.

The patient speaks Punjabi at home and speaks English and Swahili commonly. She also learnt Gujrati as a child, is able to read and write Hindi, and speaks Urdu.

On examination the patient was alert and orientated. There were no abnormalities on neurological examination. An EEG showed bilateral temporal lobe spikes, more on the right, which were accentuated with over-breathing. A CT scan was normal. The patient was given 100 mg carbamazepine twice a day and no further episodes occurred during the ensuing four months. A variety of speech disturbances may occur in patients with temporal lobe epilepsy. Dyspraxia includes a dissociation of sites originating in the dominant hemisphere.1 Investigations to localise the disturbances have been made by stimulation studies.2 Speech automatisms have usually been localised to the dominant hemisphere.3

If much information exists on the speech disturbances in multilingual people with strokes. There are two main themes, one propounded by Ribot, who said that the first language to be acquired is the first to recover and that ‘the mother tongue’ is the dominant hemisphere, although they are occasionally noted in the dominant hemispheres.

In this case there is no clear language dominance in the subject. The patient was examined in the second division of the nerve, whereas in eight, the first and second divisions were affected. The other four patients complained of pain in the distribution of the second and third divisions of the trigeminal nerve. In 13 patients the idiaphasia was idiolectic; all had been taking carbamazepine for a considerable time with partial or no response. One patient had a giant suprasellar aneurysm and another a large acoustic neuroma, both inoperable because of the patient’s advanced age and general condition.

The treatment consisted of instillation of two drops of proparacaine hydrochloride 0.5% in the eye of the affected side, in every case. A satisfactory effect was obtained in 13 patients with a clear cut improvement of symptoms allowing withdrawal or reduction of the daily dose of carbamazepine. In two patients (including a hospital physician) the medication stopped an attack of severe pain and this result is now permanent.

Ribot’s was removed altogether in the first 8 patients and twice in two patients to obtain a stable and lasting result. The observation period ranged between one and four months and no side effects were reported by the patients. One patient experienced no change in her symptoms after the initial instillation and refused a second attempt, and another patient was lost to follow up. In accordance with the previous authors, we find it difficult to propose a mechanism by which a benzoic ester with topical anesthetic effect produces lasting relief of neuralgia in the distribution of the divisions of the trigeminal nerve than the local anaesthetic, the way in which the drug acts directly. Is it possible that some of the drug drained through the lacrimal duct in the nasal and oral cavities, was absorbed by the mucosa and the nerve endings in the second division of the nerve, and eventually reached the trigeminal nucleus via retrograde axonal transport?

MARTIN S SCHWARTZ
Department of Neurology, Ashkon Morley’s Hospital, Cape Hill, Walsden SW20 ONB, UK

1 Serafatinides EA, Falconer MA. Speech disturbances in temporal lobe seizures; a study in 100 epileptic patients submitted to anterior temporal lobectomy. Brain 1963; 58:333-41.


Relief of trigeminal neuralgia by proparacaine

Two recent publications1 2 have reported the successful treatment of trigeminal neuralgia by the ophthalmic anaesthetic proparacaine hydrochloride 0.5% instilled in the eye of the affected side.

We tried this medication in 15 patients suffering from neuralgia involving one or two branches of the trigeminal nerve. In all patients there was intact sensation in the second division of the nerve, whereas in eight, the first and second divisions were affected. The other four patients complained of pain in the distribution of the second and third divisions of the trigeminal nerve. In 13 patients the idiaphasia was idiolectic; all had been taking carbamazepine for a considerable time with partial or no response. One patient had a giant suprasellar aneurysm and another a large acoustic neuroma, both inoperable because of the patient’s advanced age and general condition.

The treatment consisted of instillation of two drops of proparacaine hydrochloride 0.5% in the eye of the affected side, in every case. A satisfactory effect was obtained in 13 patients with a clear cut improvement of symptoms allowing withdrawal or reduction of the daily dose of carbamazepine. In two patients (including a hospital physician) the medication stopped an attack of severe pain and this result is now permanent. Ribot’s was removed altogether in the first eight patients and twice in two patients to obtain a stable and lasting result. The observation period ranged between one and four months and no side effects were reported by the patients. One patient experienced no change in her symptoms after the initial instillation and refused a second attempt, and another patient was lost to follow up. In accordance with the previous authors, we find it difficult to propose a mechanism by which a benzoic ester with topical anesthetic effect produces lasting relief of neuralgia in the distribution of the divisions of the trigeminal nerve than the local anaesthetic, the way in which the drug acts directly. Is it possible that some of the drug drained through the lacrimal duct in the nasal and oral cavities, was absorbed by the mucosa and the nerve endings in the second division of the nerve, and eventually reached the trigeminal nucleus via retrograde axonal transport?
