two months after a small infarction in the left thalamus. She stated that the pain was constant, burning, and unbearable. There was pronounced allodynia to light touch and cold stimuli. Pinprick showed hyperesthesia. At first we gave 50 μg of baclofen intrathecally, with no pain relief. The dose was gradually increased to 150 μg but she reported no pain relief. There was transient urinary retention.

Case 4
A 62-year-old man had central pain due to cerebral haemorrhage in the left corona radiata. His pain was in the distal parts of the right upper and lower extremities. There was no allodynia. Hyperesthesia to pinprick was noted in the right half of his body. A bolus of 50 μg of intrathecal baclofen resulted in considerable pain reduction in an hour (1-2/10), that developed in the upper and lower limbs at the same time. The effect continued for about 12 hours. This response was confirmed three times with repeat intrathecal injections of the same dose. There was no sensory change with the injection.

Case 5
A 47-year-old woman had disabling central pain for the past two years. The pain was in the right half of her body including the face. This pain started two months after a hypertensive haemorrhage in the left putamen. Although there was no allodynia, hyperesthesia to pinprick stimuli was noted in the right half of the body. About one hour after intrathecal baclofen (50 μg), pain relief developed in the face first, and then in the body. She reported pain scores of 4-6/10. We gave the injection five times and the pain relief was consistent. Relief was always associated with suppression of hyperesthesia. Placebo did not relieve the pain.

All the patients except one (case 3) reported that no other treatment had been as effective as intrathecal baclofen. Although the present study was not double-blind, we do not consider that the result is merely a placebo effect or is due to observers’ bias. The pain relief was always associated with baclofen and placebo was ineffective. Although the patients were not informed of the possible course of pain relief, it was constant for each individual patient. After the study period of intrathecal baclofen, we gave oral baclofen (30-60 mg/day) to all patients; no pain relief was achieved.

Baclofen, an agonist of γ-aminobutyric acid (GABA) receptors, has antispastic effects and its intrathecal use relieves severe spasticity. Furthermore, intrathecal baclofen is known to have an antinoceptive effect in experimental animals, which is not reversed by naloxone. Intrathecal baclofen also suppresses allodynia induced by prostaglandin F₂α in mice. Recently Herman et al. reported that intrathecal baclofen relieves central pain in patients with spinal lesions. In their report, even a patient with a C3 lesion showed suppression of leg pain with lumbar intrathecal baclofen.

The mechanism of suppression of central pain after a stroke with lumbar intrathecal baclofen is difficult to explain. In the first two patients, pain relief started from the leg. Therefore we considered that the effect was segmental and due to a direct effect of baclofen on the GABA receptors in the spinal cord. The hypothesis is based on the idea that the loss of dorsal horn interneurons containing GABA and glycine in humans leads to an allodynic or hyperaesthetic state, and it should be studied further if such loss of spinal interneurons occurs in central pain syndrome of supraspinal origin.

This preliminary study indicates that a controlled clinical trial of continuous baclofen infusion is feasible for patients with central pain of supraspinal origin.

Correspondence to: Dr Takaomi Taira

Effect of immobilisation on position and movement sense of the knee

It has been suggested that joint position and movement sense can be improved by practice or by specialised therapeutic techniques such as weight-bearing exercises. Also, motor imbalance after immobilisation may be attributed to proprioceptive deconditioning. To investigate these theories we used established measurement techniques to test normal knees in 18 patients after a minimum two weeks of immobilisation. Ten patients had been immobilised in a full length leg plaster after fractures of the ankle region and eight were on strict bed rest due to injuries of the untested leg. Results were compared with those of 30 controls with no history of immobilisation.

Movement sense was tested by determining the threshold of perception of slow joint movement at a velocity of 0.5° per second. A motor extended or flexed the knee (starting position 35° flexion) via a system of pulleys connected to the treated and blindfolded subject by a canvas sling wrapped around an inflatable boot. Four randomised tests were carried out in flexion and extension ranges. Subjects signalled appreciation of knee joint movement by depressing a hand-held switch. The range of movement traversed before detection (threshold angle) was extrapolated from the output of potentiometers placed in parallel with the main pulley circuit.

Position sense was tested by measuring the margin of error in the reproduction of previously held knee joint positions. Tests were carried out within the range 20°–50° of knee flexion—the normal arc of movement. The conditions operated—namely, active reproduction of an active movement, active reproduction of a passive movement, and passive reproduction of a passive movement. Tests involving active movement were not carried out on the plaster group because of potential effects of muscle weakness and lack of coordination on results. Achievement of target positions was signalled by depressing a hand-held switch.

Results were recorded directly onto computer disc and analysed with two-tailed t tests and one way analysis of variance. Tests of movement sense did not show any significant differences either between or within groups (figure). Movement was detected within a mean of 2°.

There were no significant differences in results for position sense either between or within groups. Subjects were accurate to within a mean of 4°. There was a trend, which reached significance in controls (n = 13, p < 0.001), for greater inaccuracy in active reproduction of a passive movement compared with active reproduction of an active movement and passive reproduction of a passive movement.

In conclusion, results for controls were comparable with those of other studies on the knee joint. No significant differences were detected in position or movement sense between the knees of subjects experiencing altered mobility and weight-bearing conditions and normal controls. The applicability of the results of these tests to normal functional movement is uncertain and warrants further investigation. Results suggest, however, that functional deconditioning in non-neurological subjects after a period of altered weight-bearing and mobility of the knee joint may be due to factors other than adaptation of position and movement sense mechanisms. Position and movement sense seem to be resistant to changing physical states. The rationale of therapeutic techniques that purport to improve position and movement sense in neurologically intact patients should be reconsidered.
As well as this central finding, the results of our study provide further support for a role of muscle afferents in proprioception. Controls were significantly less accurate in reproducing knee joint position when initial test movements differed from subsequent target seeking movements. This has possible implications for the common physiotherapeutic practice of re-educating active movement through the medium of passive movement.

Funding by the Department of Health is gratefully acknowledged.

A SWINKELS
School of Physiotherapy,
Bath and West of England College of Health Studies,
The Manor House, Combe Park,
Bath BA1 3NW, UK

CD WARD
University of Southampton

1 Kinsner C, Colby LA. Therapeutic exercise—
Foundations and techniques. Philadelphia:
FA Davis Co, 1990;214-401.

2 Barrack RL, Skinner HB, Buckley SL.
Proprioception in the anterior cruciate defi-
171-4.

3 Corrigan JP, Cashman WF, Brady MP.
Proprioception in the cruciate-deficient knee.
J Bone Joint Surg [Br] 1997;74-B:
247-50.

4 Matthews PBC. Proprioceptors and their con-
tribution to somatosensory mapping; com-
plex messages require complex processing.

Worsening of myasthenia gravis on treatment with imipenem/cilastatin

Myasthenia gravis may be exacerbated by a number of antibiotics which impair neuromuscular transmission, including the aminoglycosides, tetracyclines, and the polypeptide group. Several reports have suggested that ampicillin and erythromycin may have similar effects.1,2

We describe here the worsening of myasthenia gravis on treatment with imipenem/cilastatin. Imipenem is a member of a new class of β-lactam antibiotic: the carbapenems. It is combined with cilastatin, a renal dehydropeptidase inhibitor, to inhibit renal degradation and has a wide spectrum of activity againstGram-negative and anaerobic bacteria, and against many multi-resistant strains of bacteria.

CASE REPORT

A 45-year-old man presented with a three week history of progressive diplopia, facial weakness, and respiratory difficulties. Myasthenia gravis with malignant thymoma had been diagnosed previously; thymectomy was performed at that time and histology showed a mixed lymphocytic/epithelial cell tumour. He had a left upper lobectomy for pleural based metastases three years later. For the next seven years he remained well, requiring only 120 mg of pyridostigmine bromide daily.

At presentation mechanical ventilation was necessary. He had received azathioprine, steroids were gradually added to a dose of 60 mg prednisolone daily, and he received a course of plasma exchange.

Two months after admission he was extubated. At this stage he was receiving 150 mg pyridostigmine every three hours, azathioprine 150 mg each day, and prednisolone 60 mg on alternate days. Plasma exchange was continued with an exchange of two litres on a fortnightly basis. Six weeks after extubation a catheter was inserted into the right subclavian vein for easy venous access. He improved slowly. His forced vital capacity (FVC) increased from 0·3 l on admission to 2·4 l with moderate fatigue and reduced strength and bulbar movements. He subsequently developed superficial cellulitis at the site of the catheter. Staphylococcus aureus was grown and he was treated with flucloxacillin 500 mg intravenously three times a day for 21 days, and cloxacillin 2475 mg four times a day was added.

His myasthenia deteriorated dramatically over the next 48 hours. His FVC decreased to 1·8 l with diplopia, marked bilateral facial weakness, and severe bulbar weakness. He also noted increased weakness in his arms and proximal leg muscles and had difficulty in walking. Serum calcium, urea, and electrolytes were normal. He responded positively to edrophonium 10 mg intravenously, with a subjective improvement of his ocular bulbar and limb weakness. His FVC increased to 2·3 l. The imipenem/cilastatin was discontinued and the other drugs were left unchanged. Plasma exchange was not restarted at this stage, because of the presence of infection; despite this, he improved over the next 24 hours and after 48 hours was back to his baseline state. The cellulitis resolved after six days and the flucloxacillin was discontinued after two weeks.

Various antibiotics may interfere with neuromuscular transmission and the mechanisms of action may include: a pre-synaptic effect leading to impaired release of acetylcholine, a post-synaptic curare-like blockade of the acetylcholine receptor, or a combination of the two mechanisms. The aminoglycosides act pre-synaptically and post-synaptically, while the tetracyclines have a curare-like action.1 The mechanisms of action of ampicillin, erythromycin, ciprofloxacin, and the polypeptides are unclear.

A discussion with staff at Merck, Sharp and Dohme showed that one case had been reported to their adverse event database of myasthenia gravis developing in a patient receiving imipenem/cilastatin. To our knowledge there has been no published case. Our patient developed a worsening of his myasthenia while receiving this drug. His concurrent cellulitis may have been an additive factor, but this persisted long after the patient returned his to baseline state.

J ORIODAN
M JAVED
C DOHERTY
M HUTCHINSON
Department of Neurology,
St Vincent’s Hospital,
Dublin, Ireland

Correspondence to: Dr Hutchison, Department of Neurology, St Vincent’s Hospital, Elm Park, Dublin 4, Ireland

1 Argov Z, Mastalgia FL. Disorders of neuro-

2 Argov Z, Brenner T, Abramsky O. Ampicillin may exacerbate myasthenia gravis. Arch Neurol 1986;43:
255-6.

Acceptability of electroconvulsive therapy to patients with Parkinson’s disease

Some patients with Parkinson’s disease have been shown to respond to electroconvulsive therapy (ECT).3,4 It is not currently offered as a treatment for Parkinson’s disease in the UK as clinicians do not consider it acceptable because of the stigma surrounding what may be seen as a psychiatric treatment and a fear of ECT by the patients based on a lack of information. Parkinson’s is surprising for non-drug treatments such as fetal tissue transplantation are more invasive and carry a higher risk than ECT. A consultant neu-

We conclude that patients with Parkinson’s disease are more likely to accept ECT as a potential treatment than stereotactic transplantation. Had the patients been counselled or given further information about ECT, the proportion of respondents in this study agreeing to it may have been greater. We suggest, in the light of these findings, that although ECT is not yet of proved value, it could potentially be a safe and effective option in Parkinson’s disease, and that it is acceptable to a sizeable minority of patients. Those patients in whom drug treatment is proving unsatisfactory or in whom depressive features are prominent may benefit the most from ECT, but there is still a need for a definitive trial and further findings will have a bearing on the design of such a trial.

We are grateful to Professor PN Leigh and