imens from patients with ankylosing spondylitis. Inflammatory changes of the muscles in patients with ankylosing spondylitis have rarely been described. The muscle changes described here, however, together with two previous reports, suggest that inflammatory changes may occur in the skeletal muscles of patients with ankylosing spondylitis.

Masaaki Waragai
HITOSHI SHINOTOH
Department of Neurology,
School of Medicine,
Chiba University,
Chiba, Japan

Correspondence to: Dr Waragai, Department of Neurology, Kofu Municipal Hospital 1-6 Sawaiicho, Kofu-shi, Yamanashi 400, Japan.

Incorrect diagnosis of myotonic dystrophy and potential consequences revealed by subsequent direct genetic analysis

Myotonic dystrophy (MyD) is a multisystem disorder with prominent features in skeletal and cardiac muscle. It shows genetic anticipation with a tendency for members of successive generations to be affected more severely by the disease and at a younger age. At its most severe it may cause a characteristic foetal and neonatal syndrome, which can be fatal. For genetic reasons and also to identify patients at risk from cardiac complications, screening of patients at risk for MyD is now recognised as important. Classically, a combination of clinical examination, needle EMG, and slit-lamp examination of the eyes has been used to identify patients who carry the disease but only about 92% of obligate carriers are detected. The sensitivity could be increased by genetic linkage studies, but clearly this requires that the correct parent be identified as a carrier in cases where both are asymptomatic. The recent introduction of a direct DNA test to demonstrate an increase in the number of [CTG] repeats at the 3' end of the myotonic dystrophy kinase gene has now improved diagnostic accuracy and removed the need for linkage analysis. We report here two cases in which an incorrect assignment of carrier status on clinical and EMG criteria was revealed by the direct genetic test.

Case 1
A 60-year-old woman and her 70-year-old husband were seen in 1990 for screening for myotonic dystrophy after the diagnosis had been made in their 31-year-old daughter. Clinical examination showed no evidence of myotonia or percussion myotonia but a consultant neurologist considered that percussion myotonia of the tongue was present. Needle EMG revealed myotonic discharges and there were minor non-specific changes on slit-lamp examination. Based on these findings the mother was assumed to be the carrier for MyD. A clinically unaffected daughter sought genetic advice and was assigned a low risk on the basis of negative EMG and slit-lamp examination and by linkage analysis. When the direct genetic test became available in 1992 the samples were retested and the mother found not to carry the expansion associated with MyD. Her husband carried a myotonic expanded allele (EO4) and thus was a carrier of the disease. Fortunately the unaffected daughter, who had been given a low risk based on the incorrect linkage result, was found to carry no expansion and therefore not to carry the disease.

Case 2
A 51-year-old woman was screened for MyD after the diagnosis was made in three of her siblings. No abnormalities were found on neurological examination or needle EMG. She had bilateral posterior subcapsular cataracts and low intraocular pressure. The cataracts were not of the stellate form usually seen in MyD, but as there was also low intraocular pressure (which is associated with MyD) she was assigned carrier status. Linkage analysis for her asymptomatic daughter was complicated by the fact that the biological father was no longer in contact with the family so that no linkage diagnosis could be offered. For this reason the entire family was retested with the direct DNA test and the woman in question was found not to be a carrier of the disease.

In both of these cases, asymptomatic patients were diagnosed as being minimally affected by MyD based on limited clinical features, and in the first case an assessment of genetic risk was made for a third party (the patient's younger daughter) on the basis of incorrect linkage assignments. It was fortunate that the incorrect result did not lead to a misdiagnosis of the birth of a congenitally affected child. There was, however, considerable psychological trauma to the first patient both at the time of her misdiagnosis and when the diagnosis was revised. The importance of making a correct clinical diagnosis before applying linkage analysis is again brought home by these cases.

The direct demonstration of the mutation in MyD, either by restriction enzyme analysis or by the polymerase chain reaction, detects at least 99% of cases of MyD. Also, cases where myotonia has coexisted with features not considered typical of MyD have been shown to have the MyD mutation and the test has proved useful in detecting cases of congenital MyD in which the mother has not previously been known to have MyD. We feel that there is now a demonstrable need to review critically all minimally affected persons who have been diagnosed on the basis of clinical (including EMG and slit-lamp examination) or linkage analysis criteria. Linkage analysis in this condition should now be considered outdated. Finally, we advise that whereas clinical examination, EMG, and slit-lamp examination are still relevant in trying to understand the relation between genetic abnormality and clinical features, the gold standard for diagnosis and screening must be direct DNA analysis.

Philip J R Barnes
David Hilton-Jones
Oxford Muscular Dystrophy Centre,
University Department of Clinical Neurology,
Radcliffe Infirmary, Oxford OX2 6HE, UK
Gail Norbury
Oxford Medical Genetics Laboratories,
Carshalton Hospital, Oxford OX7 7LJ, UK
Susan M Huson
Oxford Regional Genetics Service,
Carshalton Hospital, Oxford OX7 7LJ, UK

Matters Arising

Lactate responses to exercise in chronic fatigue syndrome

We were interested to read the recent account of exercise characteristics in patients with chronic fatigue syndrome by Gibson et al., which concluded that there was no abnorality of neuromuscular function in this condition. Patients reached the limits of exercise tolerance at lower heart rates than controls during incremental exercise to exhaustion but their peak work rates and duration of exercise did not differ significantly from the control group, although the total work done (the product of these variables) would appear to have been less; the authors had previously reported that patients with this condition showed a reduction in maximal work rate achieved in such tests. Despite this, plasma lactate levels at the end of exercise were as high in the patients as the controls.

In an earlier study using incremental exercise on a treadmill, Riley et al. had found higher heart rates and increased lactate levels compared with normal controls at submaximal work rates but similarly noted no differences at peak exercise.

We have found that a proportion of patients with chronic fatigue syndrome exhibit abnormally raised lactate levels following steady state exercise at work rates below the anaerobic threshold, corresponding to roughly half the peak work rates achieved in the incremental exercise paradigm. It is thus possible that lactate levels in some patients increase more rapidly than normal at lower work rates.

The cause of this apparent 'left shift' of the anaerobic threshold is unclear. Neither we nor Gibson et al. found evidence of
PET assessment of brain metabolic recovery in aphasia

The paper by Cappa et al.1 deals with the important issue of the mechanisms of recovery from aphasia. The authors longitudinally assessed two patients both neuropsychologically and by 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) PET measurements of the local cerebral metabolic rate of glucose (LCMRG1). Each patient was studied twice with a three-month interval. The LCMRG1 values (19 brain regions on each side) were assessed for significant abnormalities at each study by comparison with values from a group of seven healthy subjects, while changes in LCMRG1 from first to second PET study were assessed in each patient individually by an analysis of variance with one between-factor (acute and chronic stage) and one within-factor (left and right hemisphere). The authors conclude that (1) significant reductions in the LCMRG1 of many brain regions were present in both patients at initial evaluation, and in one patient at second evaluation only; (2) there was a significant increase in LCMRG1 from first to second evaluation in each of the two patients.

We wonder whether the statistical procedures used were appropriate. Firstly, regarding the comparison with the control group, Cappa et al. used two standard deviations below control mean as the cut-off for \(p < 0.05 \); however, since the control group consisted of seven subjects, the two-tailed \(t \) value for six degrees of freedom, or 2.447, should have been used instead. As this value is substantially larger than 2.0, it is likely that several of the LCMRG1 values listed in tables 1 and 2 as statistically significantly reduced were, in fact, not. In addition, the authors do not acknowledge the fact that there is a multiple testing problem, which they are simultaneously assessing the significance of all regions.

Secondly, the analysis of variance procedure used to assess changes in LCMRG1 from one study to the next in each subject is of serious concern. Apparently, it was run on the same 38 x 19 regions (each side of brain, two determinations), and yielded inordinately low probability levels (down to \(p < 0.0001 \)) for single subject studies. Their way of using the analysis of variance in this and other studies1 would appear adequate and possibly misleading. The authors do not point out the fact that region must also be a within-subject factor. In the case of measurements of LCMRG1, there exists a global scaling factor (the mean brain CMRGl), itself influenced by both physiological and methodological factors, that affects all regional values of a given subject. Thus, in the comparison of the two sets of LCMRG1 data obtained in a single subject at two sequential studies, any change in this global factor will be repeated in all brain regions. Since the regions analysed, the larger degrees of freedom and, in turn, the more statistically significant the findings. One way of turning around this problem would have been to covary for this global factor, by, for example, an analysis of covariance.

When studying the changes in brain metabolism in a longitudinal fashion, more appropriate ways of testing whether a significant change in LCMRG1 has occurred from one investigation to the next would be to assess each brain area either across a sufficient large group of patients or, in single subjects, by following the numerical changes observed against confidence limits established for the same region in a set of control subjects studied twice at similar time intervals (that is, confidence limits for reproducibility). The results presented by Cappa et al. regarding recovery of LCMRG1 must therefore be taken as descriptive only, pending confirmation from a better designed investigation.

J C BARON
INSERM U120, Blvd H Beaugrenelle, BP 5027, 14021 Caen Cedex, France
F FORD
Robertson Centre for Biostatistics, Boyd Orr Building, University of Glasgow, Glasgow G12 8QQ, UK

Cappa et al. reply: Drs Baron and Ford express their concern about the appropriateness of the statistical methods used to support the two major findings of our paper, namely that (1) a significant decrease in the regional metabolic rate for glucose was present in several regions, not only of the right, but also of the left hemisphere in two patients with crossed aphasia in the acute stage; and (2) a significant increase of metabolism occurred between the first and the second examination, three months after onset, in the same two patients. Baron and Ford consider a cut-off value equal to the mean minus two standard deviations of LCMRG1 of normal controls as inadequate, and suggest the use of the two-tailed \(t \) value for six degrees of freedom (2.447 SD). We think that the choice of a two-tailed test is questionable, as patholog-