Multifocal eosinophilic granuloma presenting as progressive brainstem and cerebellar dysfunction

Toshiyuki Fukazawa, Tetsuro Yanagihara, Koji Hamada, Takeshi Hamada

Abstract

A 55 year old woman with multifocal eosinophilic granuloma (MEG) is described. She developed facial numbness and twitching followed by slowly progressive cerebellar symptoms. Two years later polyuria and polydipsia were noted. A CT of the brain showed multifocal enhancing lesions, and MRI showed areas of hyperintensity on T2 weighted studies in the cerebellar peduncles, pons, and midbrain. Radiographs of the skull, pelvis, and long bones were normal, but a 99mTc diphosphonate bone scan and MRI showed bone lesions compatible with granuloma. The diagnosis of MEG was made by bone biopsy. This is believed to be the first case of MEG with such unusual clinical profiles and radiographical findings. Skeletal surveys are indicated for patients with unexplained focal or multifocal inflammatory changes in the cerebellum.

Case report

A 55 year old woman was in good health until February 1990, when she noticed left facial numbness. Neurological examination was normal except for subjective left facial sensory disturbance. In June 1990 she developed an unsteady gait and dysarthria. In April 1991 she began to fall easily, and in September 1991 she was diagnosed with spinocerebellar degeneration at another hospital. In June 1992 she developed a pronounced thirst, increased water intake, and increased urinary output. The ataxia and dysarthria worsened and she was admitted to Hokuyukai Neurology Hospital on 10 September 1992.

Examination showed a well nourished woman with no exophthalmos and no bony tenderness. She had severe thirst, drinking 5 to 8 litres of water in a 24 hour period, accompanied by excessive urination. Rightward gaze evoked nystagmus and slight upbeat nystagmus during upward gaze was present as well as a cerebellar dysarthria. A left hemifacial spasm and a left peripheral facial paresis were found, with a mild atrophy of the left masseter and hypesthesia in the second division of the left trigeminal nerve. Otherwise, sensory examination gave normal results. Strength was normal, but decreased muscle tone and bilateral Babinski’s signs were present. Dysmetria in all limbs was evident, especially in the legs. This was more prominent on the left side, and there was severe gait ataxia.

Laboratory tests of adrenal, thyroid, renal, hepatic, and haematological functions, including alkaline phosphatase, gave normal results. She had negative serological evaluations for syphilis, sarcoidosis, and autoimmune diseases. A skin test for tuberculosis was negative. The presence of diabetes insipidus with a satisfactory response to vasopressin was established by a water deprivation test. Examination of CSF showed it to be normal, without an increase of IgG concentration and IgG index.

CT showed multiple abnormal enhancing lesions accompanied by poorly demarcated low density areas (fig 1), and MRI of the brain showed multifocal irregular areas of hyperintensity on T2 weighted studies (fig 2), in the medial portions of the cerebellar hemisphere, cerebellar peduncles, midbrain, and pons. Cerebellar dysfunction with diabetes

(© Neurol Neurosurg Psychiatry 1994;57:980–982)
positive by anti-S100 protein, forming nests of the cells. These histological findings were compatible with eosinophilic granuloma.

Intravenous methylprednisolone (1-0 g/day) for three days followed by a tapering course of oral prednisolone, and radiation therapy were given, with no effect on the clinical features or CT findings. After the radiation therapy the patient’s general condition deteriorated, she developed spasticity of the legs, and was confined to bed afterwards.

Discussion

Our patient had histologically confirmed evidence of eosinophilic granuloma in the bone. CT findings for the brain mimicked those of metastatic tumours, but this could be ruled out by her clinical course of over three years. Results of serial CT studies after treatment with high doses of methylprednisolone and normal IgG profiles of the CSF did not support a demyelinating process. The other differential diagnoses included tuberculosis, mycotic disease, syphilis, and sarcoidosis, but they were unlikely because of a lack of any evidence during the 10 month follow up. We believe that she had the same pathological process in the cerebellum and brainstem as in the bones.

MEG is often a disease of childhood, but the disease in our patient seemed to begin in middle age. Lesions of the CNS are usually limited to the hypothalamus and posterior pituitary gland, although cerebellar manifestations may occur. However, it is unusual for MEG to present with these extracerebral involvements unless diabetes insipidus is demonstrable, and in most of the patients described with these abnormalities, peripheral bone lesions or diabetes insipidus developed early and the diagnosis of MEG had been made before ataxia was noted.

Our patient had progressive cerebellar and brainstem symptoms two years before the onset of diabetes insipidus. She had no appearance of bony lesions characteristic of eosinophilic granuloma on plain radiographs, whereas a bone scan by an additional MRI study with Gd-DTPA showed the lesions compatible with granulomas. These bony lesions were probably too early to be seen on plain radiographs. Any other clue to the diagnosis, such as exophthalmos, was absent. Previous reports indicated that the CT abnormalities in the patients with MEG and cerebellar signs were of three types: (a) a decrease in cerebellar parenchymal absorption coefficient; (b) a bilateral calcification in the dentate nucleus; (c) a dilatation of the fourth ventricle and of the subarachnoid cisterns in the midline of the posterior fossa. Our patient had multifocal abnormal enhancing lesions with surrounding irregular low density areas, mimicking metastatic tumours. Our patient is, to our knowledge, the first case of MEG with such abnormalities in the cerebellum shown on CT. This seems to correlate with the known histopathological changes of histiocytic granuloma.
Diagnosed by brain biopsy with further skeletal evaluations. Our patient did not have this disorder because of different radiographical and pathological findings in the bone. MEG is potentially treatable. Our patient did not improve after either radiation therapy or steroid treatment, but it might have been too late to start treatment. Thus undiagnosed patients with cerebellar signs should be evaluated with radiographs of the skull and the pelvis, commonly involved sites of MEG. A bone scan is also indicated, as it can identify early lesions; repeated evaluations may be necessary because CNS signs and diabetes insipidus may precede the bone involvement by many years, as in our patient.

We are very grateful to Dr Naoki Takeda of the Department of Orthopaedic Surgery and to Dr Takayuki Nojima of the Department of Pathology, Hokkaido University, for valuable help and comments.


Figarella-Branger et al reported a primary histiocytic tumour of the cerebellum with pathological features similar to those in our patient. There was no description of skeletal surveys, however, and the authors concluded that “atypical inflammatory histiocytic tumour of the cerebellum” best characterised the lesion after craniotomy. Smith et al reported a patient with systemic histiocytosis presenting as multiple sclerosis with a clinical course and radiological findings similar to those in our patient; then Erdheim-Chester disease, another systemic histiocytosis, was