An improved diagnostic assay for Lambert-Eaton myasthenic syndrome

Masakatsu Motomura, Irene Johnston, Bethan Lang, Angela Vincent, John Newsom-Davis

Abstract
A new immunoprecipitation assay has been established for detecting antibodies to voltage-gated calcium channels (VGCCs) in Lambert-Eaton myasthenic syndrome (LEMS), using 125I-ω-conotoxin MVIIIC, which binds to P-type VGCCs, to label extracts of human cerebellum. Fifty-six of 66 serum samples (85%) from patients with clinically and electrophysiologically definite LEMS were positive for the presence of VGCC antibodies, defined as a titre >3 SD above the mean for the healthy controls (n = 10). All disease controls (n = 40) were negative. This sensitive immunoprecipitation assay should prove valuable in the diagnosis of LEMS.

(KEYWORDS: Lambert-Eaton myasthenic syndrome; ω-conotoxin; autoantibody; immunoprecipitation; voltage-gated calcium channel)

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease, often associated with small cell lung cancer (SCLC), in which antibodies are directed against voltage-gated calcium channels (VGCCs) situated on the presynaptic nerve terminal. The VGCCs may be classified by their electrophysiological characteristics into at least four subtypes (T, L, N, and P). We have previously detected antibodies to N-type VGCCs in a proportion of patients with LEMS using ω-conotoxin GVIA (ω-CgTx), purified from the fish hunting cone snail (Conus geographus), which blocks neuronal N-type VGCCs. Similar assays have been described by Sher and colleagues and Lennon and Lambert. In our series, however, less than 50% of serum samples were clearly positive and some autoimmune disease controls gave equivocal results. Recent evidence indicates that P-type VGCCs are present in some SCLC lines, are responsible for the control of neurotransmitter release at the mammalian neuromuscular junction, and may be the targets for the autoantibodies. ω-Conotoxin MVIIIC (ω-CmTx), synthesised from a sequence derived from a different cone snail (Conus magus), binds to P-type VGCCs in cerebellar extracts, and the binding sites were precipitated by three of four serum samples from patients with LEMS. We report here the results of a radioimmunoassay for 66 LEMS serum samples using 125I-ω-CmTx to label extracted VGCCs.

Methods and patients
Synthetic ω-conotoxin MVIIIC was obtained from the Peptide Institute Inc (European Distributor, Scientific Marketing, UK). The toxin was iodinated with 125I as previously described; the specific activity was 75–150 Ci/mmol. Human cerebellum was obtained from two patients with ischaemic heart disease (aged 74 and 62 years respectively). It was frozen at −70°C until required. The contralateral cerebellum was normal or showed age related changes only on routine histology. Safety precautions were taken throughout. The tissue was homogenised in 25 mM Tris-HCl/5 mM HEPES buffer, pH 7-4, containing 0-32 M sucrose, 1 μM pepstatin, 2 μM leupeptin, 0-1 mM phenylmethylsulphonylfluoride, and 20 μg/ml soybean trypsin inhibitor, and centrifuged. The membrane pellets were resuspended in the same buffer with 2% digitonin and rotated for an hour. The supernatant was separated by centrifugation at 13 000 rpm for 10 minutes. Cerebellum extract (25 μl) containing about 30 fmol of binding sites, was labelled with 125I-ω-CmTx for two hours (1-5 nM) and incubated overnight with serum (1-25–10 μl diluted 1:10) from patients with LEMS or controls. Excess goat antihuman IgG serum was then added to precipitate serum antibodies. Each sample was centrifuged and the pellets washed twice with 20 mM phosphate buffer pH 7-4 containing 0-1% Triton X-100, before counting. All steps were performed at 4°C. The specific binding was calculated from the total 125I-ω-CmTx precipitated minus the non-specific binding determined by performing the assay in the presence of excess unlabeled ω-CmTx (100 nM). Serum samples were available from 66 patients with typical clinical and electrophysiological features of LEMS. The EMG criteria comprised (a) a reduced amplitude of the resting compound muscle action potential, (b) increased jitter, (c) prolongation of the muscle action potential, (d) muscle weakness, and (e) response to treatment with plasmapheresis or intravenous immunoglobulin.
potential (CMAP) in abductor digiti minimi (<8.5 mV) and (b) an increment in CMAP amplitude after 15 seconds maximum voluntary contraction of the muscle >100% of resting CMAP. Twenty two patients had histologically proved small cell lung carcinoma (SCLC), and 29 patients had been followed up for more than five years without signs of SCLC (no cancer detected, NCD). The SCLC status of the remaining 15 patients, followed up for less than five years, was regarded as uncertain (SU). The 50 controls were 10 healthy subjects, and 10 patients each with either SCLC without neurological symptoms, myasthenia gravis, other neurological diseases, or rheumatoid arthritis/systemic lupus erythematosus.

Results
The figure (A) shows quantitative precipitation of 125I-ω-CmTx-VGCC from digitonin extracted cerebellum from two patients with LEMS. A healthy control serum showed non-specific binding only. To determine antibody titres routinely, 10 μl of serum was tested first and those samples precipitating >10 fmol of 125I-ω-CmTx binding sites were retested using 2.5 μl. Results are expressed as pmol specific 125I-ω-CmTx binding sites precipitated/titre of serum after subtraction of non-specific binding (see methods).

Fifty six of 66 LEMS samples (85%) were positive for the presence of VGCC antibodies, defined as a titre >40 pM (3SD above the mean for the healthy controls; figure (B), dotted line). The mean titres in the three clinical groups (SCLC, NCD, SU) did not differ significantly. The proportions of patients positive for antibody in the three groups were 90%, 76%, and 93% respectively. The antibody titres for all disease control samples (n = 40) were negative (<40 pM).

Discussion
In our previous study we showed that antibodies could be detected using 125I-ω-CgTx to label N-type VGCCs, but this assay yielded positive titres in only 44% of patients with LEMS. The role of anti-N-type VGCC antibodies is uncertain, but they might contribute to the disturbance of the autonomic nervous system in LEMS as N-type VGCCs are concerned in transmitter release from some autonomic nerves.

The use of P-type VGCCs should provide a better diagnostic assay because this channel subtype is responsible for neurotransmitter release at the mammalian neuromuscular junction. Also LEMS IgG blocked potassium stimulated Ca\(^{2+}\) flux in a human SCLC cell line, leading to the suggestion that P-type VGCCs might be the principal target for LEMS IgG. Moreover, similar lines have been shown to express mRNA for P-type VGCCs. In our present study we have detected positive titres in 85% of 66 patients with LEMS, using 125I-ω-CmTx. Although ω-CgTx also binds to cerebellar extracts, less than 25% of the serum samples were positive when 125I-CgTx was substituted for 125I-CmTx (unpublished data), further suggesting that the ω-CmTx-binding VGCCs are a more important antigenic target in LEMS. Human cerebellum extract was used as a source of the VGCCs; cerebellum from other species, human SCLC lines, or neuronal cell lines may provide an alternative source. This new assay should prove useful in the diagnosis and monitoring of disease progression.

We are grateful to Drs KR Mills and NMF Murray for electrophysiological studies, to Drs DA Isenberg, G Eirington, and DC Talbot for control serum, and to Dr B McDonald for obtaining the cerebellar samples. MM holds a Wellcome Research Travelling Fellowship. This work was supported by the Medical Research Council and the Sir Jules Thorn Charitable Trust.

An improved diagnostic assay for Lambert-Eaton myasthenic syndrome

Hughlings Jackson and the Holmes-Adie tonic pupil

The names of Gordon Holmes and W James Adie are traditionally attached to the syndrome of myotonic pupils and tendon areflexia. Some 50 years earlier in 1881, mydriasis with pupillary paralysis was described clearly by Hughlings Jackson. In 1914, Olloff found negative Wasserman reactions in blood and CSF in an 18 year old boy with tonic pupils, thereby showing that syphilis—previously implicated—was not the cause. Harriman and Garland credited earlier papers dating to 1902 (Strasburger, Sætser) that described tonic pupils. Adie described 19 patients, 13 with absent tendon reflexes, and noted 44 reported cases of tonic pupil. In an exemplary clinical essay, he outlined four incomplete forms (the last would not now be accepted).

1. The complete form—typical tonic pupil and absence of reflexes.

2. Incomplete forms: a) tonic pupil alone; b) atypical phase of the tonic pupil alone (ridiodrigia); c) atypical phase of the tonic pupil with absent reflexes; d) absent reflexes alone.

Adie did not claim originality, recognising descriptions from 1902. Holmes's work is not acknowledged in Adie's Brain paper. Adie commented on the fact construed attribution to syphilis: “A perversion of nervous activity” of the vegetative nervous system was, he thought, the cause.

It was the London ophthalmologist, James Ware (1756–1815), however, who furnished one of the earliest depictions in 1813.

J M S PEARCE

References:

