FOR DEBATE

Prescribing of potentially harmful drugs to patients admitted to hospital after head injury

Larry B Goldstein

Abstract

Fundamental studies in laboratory animals show that certain drugs influence behavourial recovery after brain injury. Although some drugs have the potential to enhance recovery, others may be detrimental. The purpose of the present study was to determine how often these potentially detrimental drugs are used in the management of patients with traumatic brain injury. The medical records of 100 patients with head trauma admitted to a university hospital during one year were reviewed and the frequencies of medication prescriptions during the stay in hospital were recorded. Only 14% of patients with head injury were taking medications at the time of injury. All of the patients were prescribed medications during their stay in hospital. Seventy two per cent of the patients received one or a combination of the drugs (neuroleptics and other central dopamine receptor antagonists, benzodiazepines, and the anticonvulsants phenytoin and pheno-barbitone) that animal studies suggest may impair recovery. Until the true impact of these classes of drugs on the recovery process is better understood, care should be exercised in their use.

(J Neurol Neurosurg Psychiatry 1995;58:753–755)

Keywords: head trauma; recovery

Traumatic brain injury affects 200 to 400 persons per 100 000 population in the United States and has a peak incidence in the second and third decades of life. A second peak in incidence occurs in the sixth decade. Although 5%–10% of traumatic brain injury cases are fatal (overall mortality of 25 per 100 000 population), most people have only minor injuries and do not come to medical attention. Moderate head injury (Glasgow coma scale 9–12) affects 60–75 000 persons each year. Of patients with moderate traumatic brain injury, two thirds are moderately to severely disabled three months after the injury.

Potential interventions for traumatic brain injury generally consist of primary prevention, reduction of acute sequelae, and rehabilita-
and phenobarbitone) are commonly prescribed for stroke patients for the treatment of coincident medical problems. The purpose of the present retrospective study was to determine how often these potentially detrimental drugs are used in the management of a group of patients with traumatic brain injury.

Patients and methods
Patients with head trauma admitted to Duke University Hospital between 1 January and 31 December 1990 were identified through a prospective registry. A retrospective chart review was then carried out to determine what drugs were prescribed for these patients during their stays in hospital. A variety of clinical variables were also recorded including age, sex, race, medical history, admission Glasgow coma score (GCS), brain CT findings, the occurrence of postinjury seizures, and whether craniotomy or other surgery was performed.

χ² tests were used for statistical comparisons of categorical data. The Mann-Whitney U test was used for ordinal, non-continuous data. Student's t test was used for continuous, normally distributed data.

Results
One hundred and five patients were identified through the registry. Hospital charts could not be located for five patients. Of the remaining 100 patients, there were 72 men and 28 women. Sixty six percent of the patients were white. Most of the remainder (31% of the total) were African-American. The mean age of the patients was 38 years. Fourteen patients died while in hospital and one was prematurely discharged against the advice of his physicians. As expected, the median admission Glasgow coma score of those who died was significantly lower than for those who survived (3-0 v 13-5, P < 0-001). There were no differences in survival based on racial group, sex, age, or whether craniotomy or other surgical procedures were performed during the stay in hospital (P > 0-05 for each comparison).

The mean duration of stay in hospital of the 85 survivors was 21 (range 1–129) days. Seventy seven per cent of survivors were male and 64% were white. Seventy one per cent had closed head injury, 27% had an associated skull fracture, and 2% had a gunshot wound. Twenty one per cent of these patients underwent craniotomy and 23% had other operations. Eight per cent of patients had a history of seizures and 16% had seizures during the postinjury period in hospital. There was no significant difference in the incidence of seizures after injury between those with and without a history of seizures (2% v 11%, P = 0-7). Only 14% of patients with head injury were noted in their hospital records to have been taking medications at the time of injury. All of the patients were prescribed medications during their stay in hospital. The table gives the frequency of prescription by class for drugs given to more than 10% of the patients. Anaesthetic agents used during surgical procedures and drugs used for the treatment of cerebral edema (mannitol, frusemide) are excluded from the list. The benzodiazepines were the drugs most often prescribed which, based on laboratory studies, might impair recovery after brain injury (given to 40% of the patients). Almost half of the patients were given either a neuroleptic or another centrally acting dopamine receptor antagonist. Of the 20 patients given anticonvulsants, 17 received phenytoin and three received phenobarbitone (alone or in combination with other anticonvulsant medications). Thus a total of 72% of patients received one or a combination of potentially detrimental medications. Twenty nine patients (34%) were prescribed a single and 32 (38%) were prescribed a combination of these agents.

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Patients prescribed (n %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotic</td>
<td>71 (84)</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>70 (82)</td>
</tr>
<tr>
<td>Antibiotic</td>
<td>62 (73)</td>
</tr>
<tr>
<td>Neuroleptic/dopamine antagonist*</td>
<td>41 (48)</td>
</tr>
<tr>
<td>Promethazine</td>
<td>21 (25)</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>9 (11)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>7 (8)</td>
</tr>
<tr>
<td>Combination</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Phenytoin†</td>
<td>16 (19)</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Phenytoint† + phenobarbitone†</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Carbamazepine + phenobarbitone†</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>14 (16)</td>
</tr>
<tr>
<td>Other sedative-hypnotic</td>
<td>13 (15)</td>
</tr>
<tr>
<td>Other non-narcotic analgesic</td>
<td>13 (15)</td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>9 (11)</td>
</tr>
</tbody>
</table>

* Entire classes of drugs and † individual drugs that laboratory studies suggest may impair behavioural recovery after brain injury (neuroleptics and other central dopamine receptor antagonists, benzodiazepines, and the anticonvulsants phenytoin and phenobarbitone; see text)

Discussion
The primary finding of the present study is that certain classes of drugs found to impair recovery after brain injury in studies with laboratory animals are often prescribed for patients with head injury (neuroleptics and other central dopamine receptor antagonists, benzodiazepines, and the anticonvulsants phenytoin and phenobarbitone). Whether the detrimental effects of specific drugs anticipated from laboratory studies also occurs in humans recovering from brain injury is difficult to determine. One study found that long term administration of phenytoin for prophylaxis of post-traumatic seizures may be detrimental. Both phenytoin and carbamazepine may have negative effects on cognitive performance in patients recovering from brain trauma. The duration of post-traumatic amnesia and agitation was longer in patients treated with haloperidol than in...
Prescribing potentially harmful drugs to patients admitted to hospital after head injury

those managed without this drug. Clinical data relating to the potential beneficial effects of certain drugs on recovery after traumatic brain injury is also limited. Anecdotal reports indicate that treatment with amphetamine improves cognitive function in young adults with post-traumatic organic brain syndromes. Both benzodiazepines and levodopa have been used in the treatment of small groups of patients with severe traumatic brain injury.

In summary, it is clear that certain drugs influence behavioural recovery in laboratory animals after brain injury. These drug effects can be either beneficial or detrimental. Similar drug effects may occur in humans. Certain of the drugs found to be harmful in laboratory studies are commonly employed in the management of the patient with head injury. Whenever clinically feasible, drugs not known to impair recovery should be used in place of those with potentially detrimental effects (for example, carbamazepine could be given in place of the anticonvulsants phenytoin or phenobarbitone if parenteral administration is not required; hydroxyzone could be used in place of benzodiazepines or neuroleptics for agitation). Although prescription of specific drugs is dictated by overriding medical concerns, care should be exercised in their use until their true impact on the recovery process is better understood.

I am indebted to A G Haas RN who provided a list of patients from the Duke Head injury registry and to A Perry, RN who abstracted the data from the patient's medical records.